Análisis de la condición del campo de fútbol basado en el agrupamiento de k-means

Palabras clave: análisis de imágenes, algoritmo k-means, colores dominantes, clustering, fútbol

Resumen

El fútbol, un deporte muy popular en todo el mundo, requiere que los futbolistas profesionales lo practiquen en un campo de juego en condiciones ideales, lo que, entre otras cosas, incluye el uso y mantenimiento de un césped natural saludable. En este estudio, presentamos una estrategia de asignación sin supervisión para el análisis de imágenes de campos de fútbol que utiliza agrupamiento k-means y comparación de colores para evaluar si un campo de juego está en buenas o malas condiciones. Nuestro enfoque considera las proporciones de los colores RGB dominantes para automatizar la toma de decisiones. Para tal fin, se desarrolló un prototipo que se probó con una serie de imágenes; los resultados obtenidos se compararon con los esperados.

Descargas

La descarga de datos todavía no está disponible.

Citas

Carter, W. (2020). Corner flag in the soccer field at Brastad arena [Photograph]. Wikimedia Commons. https://commons.wikimedia.org/wiki/File:Soccer_field_at_Brastad_arena_6.jpg

El País. (2018, November 9). Así fue como pintaron el césped del Centenario de verde. https://www.elpais.com.uy/ovacion/futbol/asi-pintaron-cesped-centenario-verde.html

Football NSW Limited. (2015, November 6). Field marking & equipment. A guide to preparing your field for football. https://footballnsw.com.au/wp-content/uploads/2017/06/Field-Markings-and-Equipment.pdf

Forgy, E. W. (1965). Cluster analysis of multivariate data: efficiency versus interpretability of classifications. Biometrics, 21, 768-780.

Kassambara, A. (n.d.). Cluster validation statistics: Must know methods. Datanovia. https://www.datanovia.com/en/lessons/cluster-validation-statistics-must-know-methods/

Lloyd, S. (1982). Least squares quantization in PCM. IEEE Transactions on Information Theory, 28(2), 129–137. https://doi.org/10.1109/TIT.1982.1056489

Loesdau, M., Chabrier, S., & Gabillon, A. (2014). Hue and Saturation in the RGB Color Space. In A. Elmoataz, O. Lezoray, F. Nouboud, & D. Mammass, (Eds), Image and Signal Processing. ICISP 2014. Lecture Notes in Computer Science, vol 8509. Springer. https://doi.org/10.1007/978-3-319-07998-1_23

Maklaan. (2015). A RGB color cube explained with three diagrams [Diagram]. Wikimedia Commons. https://commons.wikimedia.org/wiki/File:RGB_color_cube.svg

Na, S., Xumin, L., & Yong, G. (2010). Research on k-means clustering algorithm: An improved k-means clustering algorithm. In F. Yu, X. Peng, H. Liu, J. Shiu, & R. Ng (Eds.), Proceedings of the Third International Symposium on Intelligent Information Technology and Security Informatics (pp. 63-67). IEEE Computer Society; Conference Publishing Services. https://doi.org/10.1109/IITSI.2010.74

Pavan Kumar, I., Hara Gopal, V. P., Ramasubbareddy, S., Nalluri, S., & Govinda, K. (2020). Dominant color palette extraction by k-means clustering algorithm and reconstruction of image. In K. Raju, R. Senkerik, S. Lanka, & V. Rajagopal (Eds.), Data engineering and communication technology, vol 1079 (pp. 921–929). Springer Singapore. https://doi.org/10.1007/978-981-15-1097-7_78

Pham, D. T., Dimov, S. S., & Nguyen, C. D. (2005). Selection of K in K-means clustering. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 219(1), 103-119. https://doi.org/10.1243/095440605X8298

Radovanović, B. (2011). NK Zelengaj football pitch in Dugave neighborhood, Zagreb, Croatia [Photography]. Wikimedia Commons. https://commons.wikimedia.org/wiki/File:NK_Zelengaj_football_pitch_20110918_3186.jpg

Rhyne, T.-M. (2016). applying color theory to digital media and visualization. CRC Press. https://doi.org/10.1145/2776880.2792696

Sharma, A. (2021, December 9). How to find the most dominant colors in an image using kmeans clustering —with source code— interesting project. Towards Dev. https://towardsdev.com/how-to-find-the-most-dominant-colors-in-an-image-in-python-using-kmeans-clustering-with-source-527ef3e6775f

Solomon, C. & Breckon, T. (2011). Fundamentals of digital image processing: A practical approach with examples in Matlab. John Wiley & Sons, Ltd. https://doi.org/10.1002/9780470689776

Stockman, G., & Shapiro, L. G. (2001). Computer vision. Pearson.

Szymanski, S. (2014). It’s football not soccer. http://ns.umich.edu/Releases/2014/June14/Its-football-not-soccer.pdf

Publicado
2022-07-29
Cómo citar
Ugarte Rojas, H. E., & Chullo Llave, B. (2022). Análisis de la condición del campo de fútbol basado en el agrupamiento de k-means. Interfases, 15(015), 57-69. https://doi.org/10.26439/interfases2022.n015.5794
Sección
Artículos de investigación