Predicción de la estabilidad de voltaje en redes eléctricas inteligentes
Resumen
Las redes eléctricas inteligentes son un sistema de transporte de electricidad eficiente que no afecta al medio ambiente. Una red inteligente se considera estable cuando puede mantener un funcionamiento confiable y consistente mientras gestiona de manera efectiva diversos factores que pueden provocar interrupciones o desequilibrios en ella. La estabilidad es importante, ya que todo el proceso de transmisión depende del tiempo. En este trabajo se emplea el deep learning para predecir la estabilidad en este tipo de redes. Se utilizó una base de datos balanceada y libre de 60 000 observaciones con información de consumidores y productores obtenida a partir de simulaciones. Se concluye que esta técnica obtuvo un alto desempeño (accuracy = 97,98 %), lo que permite afirmar que el deep learning se puede considerar con seguridad para esta tarea. La cantidad de épocas influyó significativamente en el desempeño de las redes neuronales artificiales (RNA): las que tenían arquitecturas más complejas presentaron un mejor accuracy.
Descargas
Citas
Alazab, M., Khan, S., Krishnan, S. S. R., Pham, Q. V., Reddy, M. P. K. & Gadekallu, T. R. (2020). A multidirectional LSTM model for predicting the stability of a smart grid. IEEE Access, 8, 85454-85463. https://doi.org/10.1109/ACCESS.2020.2991067
Alsirhani, A., Alshahrani, M. M., Abukwaik, A., Taloba, A. I., Abd El-Aziz, R. M. & Salem, M. (2023). A novel approach to predicting the stability of the smart grid utilizing MLP- ELM technique. Alexandria Engineering Journal, 74, 495-508. https://doi.org/10.1016/j.aej.2023.05.063
Ashrafi, R., Amirahmadi, M., Tolou-Askari, M. & Ghods, V. (2021). Multi-objective resilience enhancement program in smart grids during extreme weather conditions. International Journal of Electrical Power & Energy Systems, 129, 106824. https://doi.org/https://doi.org/10.1016/j.ijepes.2021.106824
Ayadi, F., Colak, I. & Bayindir, R. (2019). Interoperability in smart grid. En 7th International Conference on Smart Grid (icSmartGrid) (pp. 165-169). Institute of electrical and electronics engineers. https://doi.org/10.1109/icSmartGrid48354.2019.8990680
Azad, S., Sabrina, F. & Wasimi, S. (2019). Transformation of smart grid using machine learning. En 29th Australasian Universities Power Engineering Conference (AUPEC), pp. 1-6. Institute of electrical and electronics engineers. https://doi.org/10.1109/AUPEC48547.2019.211809
Babar, M., Tariq, M. U. & Jan, M. A. (2020). Secure and resilient demand side management engine using machine learning for IoT-enabled smart grid. Sustainable Cities and Society, 62, 102370. https://doi.org/https://doi.org/10.1016/j.scs.2020.102370
Bashir, A. K., Khan, S., Prabadevi, B., Deepa, N., Alnumay, W. S., Gadekallu, T. R., & Maddikunta, P. K. R. (2021). Comparative analysis of machine learning algorithms for prediction of smart grid stability. International Transactions on Electrical Energy Systems, 31(9). https://doi.org/10.1002/2050-7038.12706
Dileep, G. (2020). A survey on smart grid technologies and applications. Renewable Energy, 146, 2589-2625. https://doi.org/https://doi.org/10.1016/j.renene.2019.08.092
Emmanuel, M., Rayudu, R. & Welch, I. (2019). Modelling impacts of utility-scale photovoltaic systems variability using the wavelet variability model for smart grid operations. Sustainable Energy Technologies and Assessments, 31, 292-305. https://doi.org/https://doi.org/10.1016/j.seta.2018.12.011
Fan, D., Ren, Y., Feng, Q., Liu, Y., Wang, Z. & Lin, J. (2021). Restoration of smart grids: Current status, challenges, and opportunities. Renewable and Sustainable Energy Reviews, 143, 110909. https://doi.org/https://doi.org/10.1016/j.rser.2021.110909
Ghafouri, M., Au, M., Kassouf, M., Debbabi, M., Assi, C., & Yan, J. (2020). Detection and mitigation of cyber-attacks on voltage stability monitoring of smart grids. IEEE Transactions on Smart Grid, 11(6), 5227-5238. https://doi.org/10.1109/TSG.2020.3004303
Heidari, A. A., Faris, H., Aljarah, I. & Mirjalili, S. (2019). An efficient hybrid multilayer perceptron neural network with grasshopper optimization. Soft Computing, 23(17), 7941-7958. https://doi.org/10.1007/s00500-018-3424-2
Ibrahim, M. S., Dong, W. & Yang, Q. (2020). Machine learning driven smart electric power systems: current trends and new perspectives. Applied Energy, 272, 115237. https://doi.org/https://doi.org/10.1016/j.apenergy.2020.115237
Judge, M. A., Khan, A., Manzoor, A. & Khattak, H. A. (2022). Overview of smart grid implementation: frameworks, impact, performance and challenges. Journal of Energy Storage, 49, 104056 https://doi.org/https://doi.org/10.1016/j.est.2022.104056
Kotsiopoulos, T., Sarigiannidis, P., Ioannidis, D. & Tzovaras, D. (2021). Machine learning and deep learning in smart manufacturing: the smart grid paradigm. Computer Science Review, 40, 100341. https://doi.org/https://doi.org/10.1016/j.cosrev.2020.100341
Lamnatou, Chr., Chemisana, D. & Cristofari, C. (2022). Smart grids and smart technologies in relation to photovoltaics, storage systems, buildings and the environment. Renewable Energy, 185, 1376-1391. https://doi.org/https://doi.org/10.1016/j.renene.2021.11.019
Lei, Y., Yang, B., Jiang, X., Jia, F., Li, N. & Nandi, A. K. (2020). Applications of machine learning to machine fault diagnosis: a review and roadmap. Mechanical Systems and Signal Processing, 138, 106587. https://doi.org/https://doi.org/10.1016/j.ymssp.2019.106587
Liu, D., Zhang, Q., Chen, H. & Zou, Y. (2022). Dynamic energy scheduling for end-users with storage devices in smart grid. Electric Power Systems Research, 208, 107870. https://doi.org/https://doi.org/10.1016/j.epsr.2022.107870
Ma, R., Chen, H. H., Huang, Y. R., & Meng, W. (2013). Smart grid communication: its challenges and opportunities. IEEE transactions on Smart Grid, 4(1), 36-46. https://doi.org/10.1109/TSG.2012.2225851
Massaoudi, M., Abu-Rub, H., Refaat, S. S., Chihi, I., & Oueslati, F. S. (2021). Accurate smart grid stability forecasting based on deep learning: point and interval estimation method. En Kansas Power and Energy Conference (KPEC) (pp. 1-6). Institute of electrical and electronics engineers. https://doi.org/10.1109/KPEC51835.2021.9446196
Mollah, M. B., Zhao, J., Niyato, D., Lam, K.-Y., Zhang, X., Ghias, A. M. Y. M., Koh, L. H. & Yang, L. (2021). Blockchain for future smart grid: a comprehensive survey. IEEE Internet of Things Journal, 8(1), 18-43. https://doi.org/10.1109/JIOT.2020.2993601
Mukherjee, R. & De, A. (2020). Development of an ensemble decision tree-based power system dynamic security state predictor. IEEE Systems Journal, 14(3), 3836-3843. https://doi.org/10.1109/JSYST.2020.2978504
Muthamizh Selvam, M., Gnanadass, R. & Padhy, N. P. (2016). Initiatives and technical challenges in smart distribution grid. Renewable and Sustainable Energy Reviews, 58, 911-917. https://doi.org/https://doi.org/10.1016/j.rser.2015.12.257
Neffati, O. S., Sengan, S., Thangavelu, K. D., Kumar, S. D., Setiawan, R., Elangovan, M., Mani, D., & Velayutham, P. (2021). Migrating from traditional grid to smart grid in smart cities promoted in developing country. Sustainable Energy Technologies and Assessments, 45, 101125. https://doi.org/10.1016/j.seta.2021.101125
Omitaomu, O. A., & Niu, H. (2021). Artificial intelligence techniques in smart grid: a survey. Smart Cities, 4(2), 548-568. https://doi.org/10.3390/smartcities4020029
Panda, D. K. & Das, S. (2021). Smart grid architecture model for control, optimization and data analytics of future power networks with more renewable energy. Journal of Cleaner Production, 301, 126877. https://doi.org/10.1016/j.jclepro.2021.126877
Sai Pandraju, T. K., Samal, S., Saravanakumar, R., Yaseen, S. M., Nandal, R. & Dhabliya, D. (2022). Advanced metering infrastructure for low voltage distribution system in smart grid based monitoring applications. Sustainable Computing: Informatics and Systems, 35, 100691. https://doi.org/https://doi.org/10.1016/j.suscom.2022.100691
Singh, A. K., Singh, R., & Pal, B. C. (2014). Stability analysis of networked control in smart grids. IEEE Transactions on Smart Grid, 6(1), 381-390. https://doi.org/10.1109/TSG.2014.2314494
Shi, Z., Yao, W., Li, Z., Zeng, L., Zhao, Y., Zhang, R., Tang, Y., & Wen, J. (2020). Artificial intelligence techniques for stability analysis and control in smart grids: Methodologies, applications, challenges and future directions. Applied Energy, 278, 115733. https://doi.org/10.1016/j.apenergy.2020.115733
Shobole, A. A. & Wadi, M. (2021). Multiagent systems application for the smart grid protection. Renewable and Sustainable Energy Reviews, 149, 111352. https://doi.org/https://doi.org/10.1016/j.rser.2021.111352
Stright, J., Cheetham, P. & Konstantinou, C. (2022). Defensive cost-benefit analysis of smart grid digital functionalities. International Journal of Critical Infrastructure Protection, 36, 100489. https://doi.org/https://doi.org/10.1016/j.ijcip.2021.100489
Tiwari, S., Jain, A., Ahmed, N. M. O. S., Charu, Alkwai, L. M., Dafhalla, A. K. Y. & Hamad, S. A. S. (2022). Machine learning-based model for prediction of power consumption in smart grid. Smart way towards smart city. Expert Systems, 39(5), e12832. https://doi.org/https://doi.org/10.1111/exsy.12832
Tufail, S., Parvez, I., Batool, S., & Sarwat, A. (2021). A survey on cybersecurity challenges, detection, and mitigation techniques for the smart grid. Energies, 14(18), 5894. https://doi.org/10.3390/en14185894
Ullah, K., Hafeez, G., Khan, I., Jan, S. & Javaid, N. (2021). A multi-objective energy optimization in smart grid with high penetration of renewable energy sources. Applied Energy, 299, 117104. https://doi.org/https://doi.org/10.1016/j.apenergy.2021.117104
Yapa, C., de Alwis, C., Liyanage, M. & Ekanayake, J. (2021). Survey on blockchain for future smart grids: technical aspects, applications, integration challenges and future research. Energy Reports, 7, 6530-6564. https://doi.org/https://doi.org/10.1016/j.egyr.2021.09.112
Yoldaş, Y., Önen, A., Muyeen, S. M., Vasilakos, A. V., & Alan, I. (2017). Enhancing smart grid with microgrids: challenges and opportunities. Renewable and Sustainable Energy Reviews, 72, 205-214. https://doi.org/10.1016/j.rser.2017.01.064
Zhang, Y., Xin, J., Li, X. & Huang, S. (2020). Overview on routing and resource allocation based machine learning in optical networks. Optical Fiber Technology, 60, 102355. https://doi.org/https://doi.org/10.1016/j.yofte.2020.102355