Exploring Stroke Risk Identification by Machine Learning: A Systematic Review

Palabras clave: stroke, models, machine learning, risk, identification

Resumen

This work aims to systematize previous studies on stroke risk identification and its relationship with machine learning. A systematic review was conducted using the Web of Science and Scopus databases. The information was organized into three sections: stroke risk factors, data preprocessing techniques and techniques for identifying stroke risk with an emphasis on the most important features. The main results are as follows: risk factors are divided into modifiable (work environment and air pollution) and non-modifiable (sex, family history). The most commonly used data preprocessing techniques are SMOTE, standardization and value elimination/imputation. The most commonly used techniques for identifying stroke risk include support vector machine, random forest, logistic regression, naïve Bayes, k-nearest neighbors and decision tree.

Descargas

La descarga de datos todavía no está disponible.

Biografía del autor/a

Lelis Raquel Atencia Mondragon, Universidad de Lima, Perú.

Estudiante de Ingeniería de Sistemas en la Universidad de Lima, Perú. Interesada en temas relacionados con la ingeniería y el análisis de datos. Su objetivo profesional es desarrollar sus capacidades de programación con el fin de poder impactar de manera positiva en la sociedad.

Melany Cristina Huarcaya Carbajal, Universidad de Lima, Perú.

Estudiante de Ingeniería de Sistemas en la Universidad de Lima, Perú. Con enfoque en análisis de datos y ciencia de datos. Su objetivo es utilizar la tecnología y los datos para impactar positivamente en el bienestar de la sociedad peruana y construir un futuro más saludable y prometedor para todos.

 

Rosario Guzmán Jiménez, Universidad de Lima, Perú.

Magíster en Ingeniería de Sistemas de la Universidad de Lima e ingeniería de sistemas por la Universidad Católica Santa María de Arequipa. Actualmente cursa un doctorado en la Universidad Femenina del Sagrado Corazón, con un enfoque en pensamiento computacional en la educación. Es coordinadora de la O‑ cina de Títulos en la Facultad de Ingeniería de Sistemas de la Universidad de Lima y tiene más de veinte años como profesora investigadora especializada en bases de datos, procesos comerciales y sistemas ERP. Profesora investigadora del Instituto de Investigación Científica de la Universidad de Lima.

Citas

Ahammad, T. (2022). Risk factors identification for stroke prognosis using machine-learning algorithms. Jordanian Journal of Computers and Information Technology, 8(3), 282-296. https://doi.org/10.5455/jjcit.71-1652725746

Alaa, A. M., Bolton, T., Di Angelantonio, E., Rudd, J. H., & Van Der Schaar, M. (2019). Cardiovascular disease risk prediction using automated machine learning: A prospective study of 423 604 UK Biobank participants. PLOS ONE, 14(5), e0213653. https://doi.org/10.1371/journal.pone.0213653

Bernabé-Ortiz, A., & Carrillo-Larco, R. M. (2021). Tasa de incidencia del accidente cerebrovascular en el Perú. Revista Peruana de Medicina Experimental y Salud Pública, 38(3), 399-405. https://dx.doi.org/10.17843/rpmesp.2021.383.7804

Castañeda-Guarderas, A., Beltrán-Ale, G., Casma-Bustamante, R., Ruiz-Grosso, P., & Málaga, G. (2011). Registro de pacientes con accidente cerebro vascular en un hospital público del Perú, 2000-2009. Revista Peruana de Medicina Experimental y Salud Pública, 28(4), 623-627. http://www.scielo.org.pe/scielo.php?script=sci_arttext&pid=S1726-46342011000400008

Centers for Disease Control and Prevention (2022). Stroke signs and symptoms. https://www.cdc.gov/stroke/signs_symptoms.htm.

Chantamit-o-pas, P., & Goyal, M. (2017). Prediction of stroke using deep learning model. In D. Liu, S. Xie, Y. Li, D. Zhao, & E. S. El-Alfy (Eds), Neural Information Processing (pp. 774-781). Springer. https://doi.org/10.1007/978-3-319-70139-4_78

Chen, S. D., You, J., Yang, X. M., Gu, H. Q., Huang, X. Y., Liu, H., ... & Wang, Y. J. (2022). Machine learning is an effective method to predict the 90-day prognosis of patients with transient ischemic attack and minor stroke. BMC Medical Research Methodology, 22(1), 1-11. DOI: 10.1186/s12874-022-01672-z

Dinesh, K., Arumugaraj, K., Santhosh, K. D., & Mareeswari, V. (2018). Prediction of cardiovascular disease using machine learning algorithms. 2018 International Conference on Current Trends Towards Converging Technologies (ICCTCT). https://doi.org/10.1109/icctct.2018.8550857

Dritsas E, Trigka M. (2022) Stroke risk prediction with machine learning techniques. Sensors, 22(13), 4670. doi: 10.3390/s22134670

Hippisley-Cox, J., Coupland, C., & Brindle, P. (2017). Development and validation of QRISK3 risk prediction algorithms to estimate future risk of cardiovascular disease: Prospective cohort study. BMJ, 357: j2099. https://doi.org/10.1136/bmj.j2099

Jabal, M. S., Joly, O., Kallmes, D., Harston, G., Rabinstein, A., Huynh, T., & Brinjikji, W. (2022). Interpretable machine learning modeling for ischemic stroke outcome prediction. Frontiers in Neurology, 13, 884693. https://doi.org/10.3389/fneur.2022.884693

Khdair, H., & Dasari, N. M. (2021). Exploring machine learning techniques for coronary heart disease prediction. International Journal of Advanced Computer Science and Applications, 12(5), 28-36. http://dx.doi.org/10.14569/IJACSA.2021.0120505

King, D., Wittenberg, R., Patel, A., Quayyum, Z., Berdunov, V., & Knapp, M. (2020). The future incidence, prevalence and costs of stroke in the UK. Age and ageing, 49(2), 277-282. https://doi.org/10.1093/ageing/afz163

Langhorne, P., Stott, D. J., Robertson, L., MacDonald, J., Jones, L., McAlpine, C., Dick, F., Taylor, G. S., & Murray, G. (2000). Medical complications after stroke: A multicenter study. Stroke, 31(6), 1223-1229. https://doi.org/10.1161/01.str.31.6.1223

Lin, C. H., Hsu, K. C., Johnson, K. R., Fann, Y. C., Tsai, C. H., Sun, Y., Lien, L. M., Chang, W. l., Chen, P. L., Lin, C. L., Hsu, C. Y., & Taiwan Stroke Registry Investigators (2020). Evaluation of machine learning methods to stroke outcome prediction using a nationwide disease registry. Computer Methods and Programs in Biomedicine, 190, 105381. https://doi.org/10.1016/j.cmpb.2020.105381

Linn, L., Eberwine, D., & Oliel, S. (2014, May 15). La OPS/OMS insta a las personas en las Américas a chequear su presión arterial para prevenir infartos y accidentes cerebrovasculares. Organización Panamericana de la Salud. https://www.paho.org/es/enlace/hipertension

Liu, J., Sun, Y., Ma, J., Tu, J., Deng, Y., He, P., Li, R., Hu, F., Huang, H., Zhou, X., & Xu, S. (2021). Analysis of main risk factors causing stroke in Shanxi province based on machine learning models. Informatics in Medicine Unlocked, 26, 100712 https://doi.org/10.1016/j.imu.2021.100712

Ministerio de Salud del Perú (2020). Agenda digital del sector salud 2020-2025. http://bvs.minsa.gob.pe/local/MINSA/5165.pdf

Mohan, S., Thirumalai, C., & Srivastava, G. (2019). Effective heart disease prediction using hybrid machine learning techniques. IEEE Access, 7, 81542-81554. https://doi.org/10.1109/access.2019.2923707

Nikam, A., Bhandari, S., Mhaske, A., & Mantri, S. (2020). Cardiovascular disease prediction using machine learning models. 2020 IEEE Pune Section International Conference (PuneCon), 22-27. https://doi.org/10.1109/punecon50868.2020.9362367

Nusinovici, S., Tham, Y. C., Yan, M. Y. C., Ting, D. S. W., Li, J., Sabanayagam, C., Wong, T. Y., & Cheng, C. (2020). Logistic regression was as good as machine learning for predicting major chronic diseases. Journal of Clinical Epidemiology, 122, 56-69. https://doi.org/10.1016/j.jclinepi.2020.03.002

Qin, Q., Zhou, X., & Jiang, Y. (2021). Prognosis prediction of stroke based on machine learning and explanation model. International Journal of Computers, Communications & Control, 16(2), artículo 4108. https://doi.org/10.15837/ijccc.2021.2.4108

Qu, Y., Zhuo, Y., Lee, J., Huang, X., Yang, Z., Yu, H., Zhang, J., Yuan, W., Wu, J., Owens, D., & Zee, B. (2022). Ischemic and haemorrhagic stroke risk estimation using a machine-learning-based retinal image analysis. Frontiers in Neurology, 13: 916966. https://doi.org/10.3389/fneur.2022.916966

Sailasya, G., & Kumari, G. L. A. (2021). Analyzing the performance of stroke prediction using ML classification algorithms. International Journal of Advanced Computer Science and Applications, 12(6), 539-545. https://doi.org/10.14569/ijacsa.2021.0120662

Sarfo, F. S., Ovbiagele, B., Akpa, O., Akpalu, A., Wahab, K., Obiako, R., Komolafe, M., Owolabi, L., Ogbole, G., Calys-Tagoe, B., Fakunle, A., Sanni, T., Mulugeta, G., Abdul, S., Akintunde, A. A., Olowookere, S., Uvere, E. O., Ibinaiye, P., Akinyemi, J., ..., & SIREN. (2022). Risk factor characterization of ischemic stroke subtypes among West Africans. Stroke, 53(1), 134-144. https://doi.org/10.1161/STROKEAHA.120.032072

Shoily, T. I., Islam, T., Jannat, S., Tanna, S. A., Alif, T. M., & Ema, R. R. (2019, July). Detection of stroke disease using machine learning algorithms. 2019 10th International Conference on Computing, Communication and Networking Technologies (ICCCNT), 1-6. https://doi.org/10.1109/icccnt45670.2019.8944689

Tazin, T., Alam, M. N., Dola, N. N., Bari, M. S., Bourouis, S., & Khan, M. M. (2021). Stroke disease detection and prediction using robust learning approaches. Journal of Healthcare Engineering, 2021, 1-12. https://doi.org/10.1155/2021/7633381

The GBD 2016 Lifetime Risk of Stroke Collaborators (2018, December 19). Global, regional, and country-specific lifetime risks of stroke, 1990 and 2016. The New England Journal of Medicine, 379(25), 2429-2437. https://doi.org/10.1056/nejmoa1804492

Torres-Aguila, N. P., Carrera, C., Muiño, E., Cullell, N., Cárcel-Márquez, J., Gallego-Fabrega, C., González-Sánchez, J., Bustamante, A., Delgado, P., Ibanez, L., Heitsch, L., Krupinski, J., Montaner, J., Martí-Fàbregas, J., Cruchaga, C., Lee, J-M., Fernández-Cadenas, I., & Acute Endophenotypes Group of the International Stroke Genetics Consortium (ISGC) (2019). Clinical variables and genetic risk factors associated with the acute outcome of ischemic stroke: A systematic review. Journal of Stroke, 21(3), 276-289. https://doi.org/10.5853/jos.2019.01522

World Health Organization (2021, June 11). Cardiovascular diseases (CVDs). https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds)

World Health Organization Regional Office for the Eastern Mediterranean (n.d.). Stroke, cerebrovascular accident. https://www.emro.who.int/health-topics/stroke-cerebrovascular-accident/index.html

Zhang, L., Niu, M., Zhang, H., Wang, Y., Zhang, H., Mao, Z., Zhang, X., He, M., Wu, T., Wang, Z., & Wang, C. (2022). Nonlaboratory-based risk assessment model for coronary heart disease screening: Model development and validation. International Journal of Medical Informatics, 162, 104746. https://doi.org/10.1016/j.ijmedinf.2022.104746

Zhang, S., Zhang, W., & Zhou, G. (2019). Extended risk factors for stroke prevention. Journal of the National Medical Association, 111(4), 447-456. https://doi.org/10.1016/j.jnma.2019.02.004

Publicado
2024-07-02
Cómo citar
Atencia Mondragon, L. R., Huarcaya Carbajal, M. C., & Guzmán Jiménez, R. (2024). Exploring Stroke Risk Identification by Machine Learning: A Systematic Review. Actas Del Congreso Internacional De Ingeniería De Sistemas, 69-82. https://doi.org/10.26439/ciis2023.7081