Exploring Stroke Risk Identification by Machine Learning: A Systematic Review
Resumen
This work aims to systematize previous studies on stroke risk identification and its relationship with machine learning. A systematic review was conducted using the Web of Science and Scopus databases. The information was organized into three sections: stroke risk factors, data preprocessing techniques and techniques for identifying stroke risk with an emphasis on the most important features. The main results are as follows: risk factors are divided into modifiable (work environment and air pollution) and non-modifiable (sex, family history). The most commonly used data preprocessing techniques are SMOTE, standardization and value elimination/imputation. The most commonly used techniques for identifying stroke risk include support vector machine, random forest, logistic regression, naïve Bayes, k-nearest neighbors and decision tree.
Descargas
Citas
Ahammad, T. (2022). Risk factors identification for stroke prognosis using machine-learning algorithms. Jordanian Journal of Computers and Information Technology, 8(3), 282-296. https://doi.org/10.5455/jjcit.71-1652725746
Alaa, A. M., Bolton, T., Di Angelantonio, E., Rudd, J. H., & Van Der Schaar, M. (2019). Cardiovascular disease risk prediction using automated machine learning: A prospective study of 423 604 UK Biobank participants. PLOS ONE, 14(5), e0213653. https://doi.org/10.1371/journal.pone.0213653
Bernabé-Ortiz, A., & Carrillo-Larco, R. M. (2021). Tasa de incidencia del accidente cerebrovascular en el Perú. Revista Peruana de Medicina Experimental y Salud Pública, 38(3), 399-405. https://dx.doi.org/10.17843/rpmesp.2021.383.7804
Castañeda-Guarderas, A., Beltrán-Ale, G., Casma-Bustamante, R., Ruiz-Grosso, P., & Málaga, G. (2011). Registro de pacientes con accidente cerebro vascular en un hospital público del Perú, 2000-2009. Revista Peruana de Medicina Experimental y Salud Pública, 28(4), 623-627. http://www.scielo.org.pe/scielo.php?script=sci_arttext&pid=S1726-46342011000400008
Centers for Disease Control and Prevention (2022). Stroke signs and symptoms. https://www.cdc.gov/stroke/signs_symptoms.htm.
Chantamit-o-pas, P., & Goyal, M. (2017). Prediction of stroke using deep learning model. In D. Liu, S. Xie, Y. Li, D. Zhao, & E. S. El-Alfy (Eds), Neural Information Processing (pp. 774-781). Springer. https://doi.org/10.1007/978-3-319-70139-4_78
Chen, S. D., You, J., Yang, X. M., Gu, H. Q., Huang, X. Y., Liu, H., ... & Wang, Y. J. (2022). Machine learning is an effective method to predict the 90-day prognosis of patients with transient ischemic attack and minor stroke. BMC Medical Research Methodology, 22(1), 1-11. DOI: 10.1186/s12874-022-01672-z
Dinesh, K., Arumugaraj, K., Santhosh, K. D., & Mareeswari, V. (2018). Prediction of cardiovascular disease using machine learning algorithms. 2018 International Conference on Current Trends Towards Converging Technologies (ICCTCT). https://doi.org/10.1109/icctct.2018.8550857
Dritsas E, Trigka M. (2022) Stroke risk prediction with machine learning techniques. Sensors, 22(13), 4670. doi: 10.3390/s22134670
Hippisley-Cox, J., Coupland, C., & Brindle, P. (2017). Development and validation of QRISK3 risk prediction algorithms to estimate future risk of cardiovascular disease: Prospective cohort study. BMJ, 357: j2099. https://doi.org/10.1136/bmj.j2099
Jabal, M. S., Joly, O., Kallmes, D., Harston, G., Rabinstein, A., Huynh, T., & Brinjikji, W. (2022). Interpretable machine learning modeling for ischemic stroke outcome prediction. Frontiers in Neurology, 13, 884693. https://doi.org/10.3389/fneur.2022.884693
Khdair, H., & Dasari, N. M. (2021). Exploring machine learning techniques for coronary heart disease prediction. International Journal of Advanced Computer Science and Applications, 12(5), 28-36. http://dx.doi.org/10.14569/IJACSA.2021.0120505
King, D., Wittenberg, R., Patel, A., Quayyum, Z., Berdunov, V., & Knapp, M. (2020). The future incidence, prevalence and costs of stroke in the UK. Age and ageing, 49(2), 277-282. https://doi.org/10.1093/ageing/afz163
Langhorne, P., Stott, D. J., Robertson, L., MacDonald, J., Jones, L., McAlpine, C., Dick, F., Taylor, G. S., & Murray, G. (2000). Medical complications after stroke: A multicenter study. Stroke, 31(6), 1223-1229. https://doi.org/10.1161/01.str.31.6.1223
Lin, C. H., Hsu, K. C., Johnson, K. R., Fann, Y. C., Tsai, C. H., Sun, Y., Lien, L. M., Chang, W. l., Chen, P. L., Lin, C. L., Hsu, C. Y., & Taiwan Stroke Registry Investigators (2020). Evaluation of machine learning methods to stroke outcome prediction using a nationwide disease registry. Computer Methods and Programs in Biomedicine, 190, 105381. https://doi.org/10.1016/j.cmpb.2020.105381
Linn, L., Eberwine, D., & Oliel, S. (2014, May 15). La OPS/OMS insta a las personas en las Américas a chequear su presión arterial para prevenir infartos y accidentes cerebrovasculares. Organización Panamericana de la Salud. https://www.paho.org/es/enlace/hipertension
Liu, J., Sun, Y., Ma, J., Tu, J., Deng, Y., He, P., Li, R., Hu, F., Huang, H., Zhou, X., & Xu, S. (2021). Analysis of main risk factors causing stroke in Shanxi province based on machine learning models. Informatics in Medicine Unlocked, 26, 100712 https://doi.org/10.1016/j.imu.2021.100712
Ministerio de Salud del Perú (2020). Agenda digital del sector salud 2020-2025. http://bvs.minsa.gob.pe/local/MINSA/5165.pdf
Mohan, S., Thirumalai, C., & Srivastava, G. (2019). Effective heart disease prediction using hybrid machine learning techniques. IEEE Access, 7, 81542-81554. https://doi.org/10.1109/access.2019.2923707
Nikam, A., Bhandari, S., Mhaske, A., & Mantri, S. (2020). Cardiovascular disease prediction using machine learning models. 2020 IEEE Pune Section International Conference (PuneCon), 22-27. https://doi.org/10.1109/punecon50868.2020.9362367
Nusinovici, S., Tham, Y. C., Yan, M. Y. C., Ting, D. S. W., Li, J., Sabanayagam, C., Wong, T. Y., & Cheng, C. (2020). Logistic regression was as good as machine learning for predicting major chronic diseases. Journal of Clinical Epidemiology, 122, 56-69. https://doi.org/10.1016/j.jclinepi.2020.03.002
Qin, Q., Zhou, X., & Jiang, Y. (2021). Prognosis prediction of stroke based on machine learning and explanation model. International Journal of Computers, Communications & Control, 16(2), artículo 4108. https://doi.org/10.15837/ijccc.2021.2.4108
Qu, Y., Zhuo, Y., Lee, J., Huang, X., Yang, Z., Yu, H., Zhang, J., Yuan, W., Wu, J., Owens, D., & Zee, B. (2022). Ischemic and haemorrhagic stroke risk estimation using a machine-learning-based retinal image analysis. Frontiers in Neurology, 13: 916966. https://doi.org/10.3389/fneur.2022.916966
Sailasya, G., & Kumari, G. L. A. (2021). Analyzing the performance of stroke prediction using ML classification algorithms. International Journal of Advanced Computer Science and Applications, 12(6), 539-545. https://doi.org/10.14569/ijacsa.2021.0120662
Sarfo, F. S., Ovbiagele, B., Akpa, O., Akpalu, A., Wahab, K., Obiako, R., Komolafe, M., Owolabi, L., Ogbole, G., Calys-Tagoe, B., Fakunle, A., Sanni, T., Mulugeta, G., Abdul, S., Akintunde, A. A., Olowookere, S., Uvere, E. O., Ibinaiye, P., Akinyemi, J., ..., & SIREN. (2022). Risk factor characterization of ischemic stroke subtypes among West Africans. Stroke, 53(1), 134-144. https://doi.org/10.1161/STROKEAHA.120.032072
Shoily, T. I., Islam, T., Jannat, S., Tanna, S. A., Alif, T. M., & Ema, R. R. (2019, July). Detection of stroke disease using machine learning algorithms. 2019 10th International Conference on Computing, Communication and Networking Technologies (ICCCNT), 1-6. https://doi.org/10.1109/icccnt45670.2019.8944689
Tazin, T., Alam, M. N., Dola, N. N., Bari, M. S., Bourouis, S., & Khan, M. M. (2021). Stroke disease detection and prediction using robust learning approaches. Journal of Healthcare Engineering, 2021, 1-12. https://doi.org/10.1155/2021/7633381
The GBD 2016 Lifetime Risk of Stroke Collaborators (2018, December 19). Global, regional, and country-specific lifetime risks of stroke, 1990 and 2016. The New England Journal of Medicine, 379(25), 2429-2437. https://doi.org/10.1056/nejmoa1804492
Torres-Aguila, N. P., Carrera, C., Muiño, E., Cullell, N., Cárcel-Márquez, J., Gallego-Fabrega, C., González-Sánchez, J., Bustamante, A., Delgado, P., Ibanez, L., Heitsch, L., Krupinski, J., Montaner, J., Martí-Fàbregas, J., Cruchaga, C., Lee, J-M., Fernández-Cadenas, I., & Acute Endophenotypes Group of the International Stroke Genetics Consortium (ISGC) (2019). Clinical variables and genetic risk factors associated with the acute outcome of ischemic stroke: A systematic review. Journal of Stroke, 21(3), 276-289. https://doi.org/10.5853/jos.2019.01522
World Health Organization (2021, June 11). Cardiovascular diseases (CVDs). https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds)
World Health Organization Regional Office for the Eastern Mediterranean (n.d.). Stroke, cerebrovascular accident. https://www.emro.who.int/health-topics/stroke-cerebrovascular-accident/index.html
Zhang, L., Niu, M., Zhang, H., Wang, Y., Zhang, H., Mao, Z., Zhang, X., He, M., Wu, T., Wang, Z., & Wang, C. (2022). Nonlaboratory-based risk assessment model for coronary heart disease screening: Model development and validation. International Journal of Medical Informatics, 162, 104746. https://doi.org/10.1016/j.ijmedinf.2022.104746
Zhang, S., Zhang, W., & Zhou, G. (2019). Extended risk factors for stroke prevention. Journal of the National Medical Association, 111(4), 447-456. https://doi.org/10.1016/j.jnma.2019.02.004