Sistemas Autónomos Confiables (TAS): el enfoque de la verificabilidad

Palabras clave: sistemas autónomos, confianza, verificabilidad, validación y verificación, testing

Resumen

Los sistemas autónomos se están haciendo cargo de la toma de decisiones en muchos aspectos cruciales de nuestras vidas. Confiar en ellos ayudará a sus usuarios a beneficiarse de dichos sistemas sin dañarse a sí mismos. Establecer el nivel adecuado de confianza implica un proceso holístico de validación y verificación, que tiene en cuenta aspectos como las interacciones con el mundo físico y los usuarios humanos. En esta charla, presento nuestro esfuerzo continuo para proporcionar un marco holístico para garantizar la verificabilidad de los sistemas autónomos.

Descargas

La descarga de datos todavía no está disponible.

Biografía del autor/a

Mohammad Reza Mousavi, King’s College London, Londres, Reino Unido

Doctor en Ciencias de la Computación por la Universidad Tecnológica de Eindhoven, Países Bajos. Antes de incorporarse al King’s College de Londres en el 2021, ocupó cargos en la Universidad de Reikiavik, la Universidad Tecnológica de Eindhoven, la Universidad Tecnológica de Delft, la Universidad de Halmstad, la Universidad Tecnológica Chalmers y la Universidad de Leicester. Entre sus temas de interés están las validaciones basadas en modelos, pruebas y verificación de sistemas ciberfísicos, y líneas de productos de software de prueba. Ha liderado iniciativas de investigación y proyectos de colaboración industrial en sistemas de salud y automoción, así como su validación, verificación y certificación.

Citas

Araujo, H. L. S., Damasceno, C. D. N., Dimitrova, R., Kefalidou, G., Mehtarizadeh, M., Mousavi, M. R., Onime, J., Ringert, J. O., Rojas, J. M., Verdezoto, N. X., & Wali, S. (2019, October 21-23). Trusted autonomous vehicles: An interactive exhibit.) [Conferencepresentation]. 2019 IEEE International Conferences on Ubiquitous Computing & Communications (IUCC) and Data Science and Computational Intelligence (DSCI) and Smart Computing, Networking and Services (SmartCNS), Shenyang, China. https://doi.org/10.1109/IUCC/DSCI/SmartCNS.2019.00091

Araujo, H., Hoenselaar, T., Mousavi, M. R., & Vinel, A. (2020, August 31-September 3). Connected automated driving: A model-based approach to the analysis of basic awareness services [Conference presentation]. 2020 IEEE 31st Annual International Symposium on Personal, Indoor and Mobile Radio Communications, London, United Kingdom. https://doi.org/10.1109/PIMRC48278.2020.9217142

Araujo, H., Mousavi, M. R., & Varshosaz, M. (2022). Testing, validation, and verification of robotic and autonomous systems: A systematic review. ACM Transactions on Software Engineering and Methodology.. https://doi.org/10.1145/3542945

Biewer, S., Dimitrova, R., Fries, M., Gazda, M., Heinze, T., Hermanns, H., & Mousavi, M. R. (2022). Conformance relations and hyperproperties for doping detection in time and space. Logical Methods in Computer Science, 18(1). https://doi.org/10.46298/lmcs-18(1:14)2022

Damasceno, C. D. N., Mousavi, M. R., & da Silva Simao, A. (2019, December 2-6). Learning to reuse: Adaptive model learning for evolving systems [Conference presentation]. 15th International Conference, IFM 2019, Bergen, Norway.. https://doi.org/10.1007/978-3-030-34968-4_8

Damasceno, C. D. N., Mousavi, M. R., & Simao, A. da S. (2021). Learning by sampling: Learning behavioral family models from software product lines. Empirical Software Engineering, 26, 4. https://doi.org/10.1007/s10664-020-09912-w

Gou, M. S., Lakatos, G., Holthaus, P., Wood, L., Mousavi, M. R., Robins, B., & Amirabdollahian, F. (2022, August 29-September 2). Towards understanding causality – a retrospective study of using explanations in interactions between a humanoid robot and autistic children [Conference presentation]. 2022 31st IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), Naples, Italy. https://doi.org/10.1109/RO-MAN53752.2022.9900660

Mousavi M. R., Cavalcanti A., Fisher M., Dennis L., Hierons R., Kaddouh B., Law E. L., Richardson R., Ringert J. O., Tyukin I., & Woodcock J (2022). Trustworthy autonomous systems through verifiability. IEEE Software.

Tavassoli, S., Damasceno, C. D. N., Khosravi, R., & Mousavi, M. R. (2022, September 12-16). Adaptive behavioral model learning for software product lines [Conference presentation]. Proceedings of the 26th ACM International Systems and Software Product Line Conference Graz, Austria. https://doi.org/10.1145/3546932.3546991

Publicado
2022-12-26
Cómo citar
Mousavi, M. R. (2022). Sistemas Autónomos Confiables (TAS): el enfoque de la verificabilidad. Actas Del Congreso Internacional De Ingeniería De Sistemas, 27-29. https://doi.org/10.26439/ciis2022.6063