Detección del SARS-CoV-2 en radiografías de tórax por medio de descriptores intermedios y técnicas de machine learning

  • Gonzalo Bardález-Trigoso Universidad ESAN
  • Jean Pablo Bazán-Arzapalo Universidad ESAN
  • Junior Fabián Universidad ESAN
  • Pedro Montenegro-Montori Universidad ESAN
Palabras clave: COVID-19, aprendizaje automático, aprendizaje profundo, visión computacional, descriptores de nivel intermedio

Resumen

El SARS-CoV-2, que causa la enfermedad del COVID-19, es un virus que se ha expandido rápidamente por el mundo, teniendo como lugar de inicio la ciudad de Wuhan, en China. A la fecha se han detectado más de 36 738 525 casos a nivel mundial. La tasa de infectados aumenta diariamente y la capacidad sanitaria no se da abasto. Por estas razones, se ha venido proponiendo una variedad de métodos para identificar el novel coronavirus con mayor rapidez y a menor costo. Un ejemplo de estos métodos para identificar la enfermedad es el COVID-Net, una red convolucional que identifica el COVID-19, neumonía o pulmones en condición normal. En este trabajo se propone una metodología para identificar y clasifi car imágenes de radiografías de tórax que tienen el COVID-19, neumonía o sin condición. Para esto se utilizaron extractores de características intermedias: HOG+PCA, SIFT+K-means y SURF+K-means, combinados con un SVM como clasificador; además, se emplearon tres estructuras CNN: VGG19, Densenet121 y MobilnetV2. Se utilizó la base de datos COVIDx3 que consta de 15 476 imágenes radiográficas de pulmón. Se obtuvieron buenos resultados, y se determinó que la mejor de las combinaciones fue la que utilizó MobilnetV2 con aumento de datos obteniendo una sensitividad por clase COVID-19 de 0,97 y en promedio una precisión y sensitividad de 0,92 y 0,91. Debido al contexto de la crisis sanitaria generada por el COVID-19, este trabajo se presenta como un apoyo para la detección de esta enfermedad y como marco de referencia para futuras investigaciones.

Descargas

La descarga de datos todavía no está disponible.

Citas

Apostolopoulos, I. D., y Mpesiana, T. A. (2020). COVID-19: Automatic Detection from X-Ray Images Utilizing Transfer Learning with Convolutional Neural Networks. Physical and Engineering Sciences in Medicine, 43(2), 635-640. https://doi.org/10.1007/s13246-020-00865-4

Bay, H., Tuytelaars, T., y Van Gool L. (2006). SURF: Speeded Up Robust Features. ECCV 2006. 3951, 404-417. 10.1007/11744023_32

Cohen, J. P., Morrison, P., y Dao, L. (2020). COVID-19 Image Data Collection: Prospective Predictions Are the Future. https://arxiv.org/pdf/2003.11597.pdf

Bell et al.(s. f.). COVID-19. https://radiopaedia.org/articles/covid-19-4

Dalal, N., y Triggs, B. (2005). Histograms of Oriented Gradients for Human Detection. IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05). 1, 886-893. 10.1109/CVPR.2005.177

European Society of Radiology. (2020). COVID. https://www.eurorad.org/advanced-search?search=COVID

Gao, H., Zhuang, L., van der Maaten, L., y Weinberger, K. (2018). Densely Connected Convolutional Networks. https://arxiv.org/pdf/1608.06993.pdf

Lowe, D. (2004). Distinctive Image Features from Scale-Invariant Keypoints. InternationalJournal of Computer Vision, 60, 91-110. https://doi.org/10.1023/B:VISI.0000029664.99615.94

Oh, Y., Park, S., y Ye, J. C. (2020). Deep Learning COVID-19 Features on CXR Using Limited Training Data Sets. IEEE Transactions on Medical Imaging, 39(8), 2688-2700. https://doi.org/10.1109/TMI.2020.2993291

Radiological Society of North America. (Octubre del 2018). RSNA Pneumonia Detection Challenge [Dataset]. https://www.kaggle.com/c/rsna-pneumonia-detection-challenge

Rahman, T., Chowdhury, M., y Khandakar A. (Marzo del 2020). COVID-19 Radiography [Dataset]. https://www.kaggle.com/c/rsna-pneumonia-detection-challenge

Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., y Chen L. (2018). MobileNetV2: Inverted Residuals and Linear Bottlenecks. IEEE/CVF Conference on Computer Vision and Pattern Recognition, 4510-4520. 10.1109/CVPR.2018.00474

Simonyan, K., y Zisserman, A. (2014). Very Deep Convolutional Networks for Large-Scale Image Recognition. https://arxiv.org/pdf/1409.1556.pdf

Società Italiana di Radiologia Medica e Interventistica. (2020). COVID-19 Database. https://www.sirm.org/category/senza-categoria/COVID-19/

Wang, L., Wong, A., Qiu Lin, Z., McInnis, P., Chung, A., y Gunraj, H. (2020). Actualmed COVID-19 Chest X-Ray Dataset Initiative [Dataset]. https://github.com/agchung/Actualmed-COVID-chestxray-dataset

Wang, L., Qiu Lin, Z., y Wong, A. (2020). Figure 1 COVID-19 Chest X-Ray Dataset Initiative. https://github.com/agchung/Figure1-COVID-chestxray-dataset

Wang, L., Qiu Lin, Z., y Wong, A. (2020). COVIDx Dataset (version 3) [Dataset].

https://github.com/lindawangg/COVID-Net/blob/master/docs/COVIDx.md

Wang, L., y Wong, A. (2020). COVID-Net: A Tailored Deep Convolutional Neural Network Design for Detection of COVID-19 Cases from Chest X-Ray Images. arXiv preprint arXiv:2003.09871.

Wang, W., Xu, Y., Gao, R., Lu, R., Han, K., Wu, G., y Tan, W. (2020). Detection of SARS-CoV-2 in Different Types of Clinical Specimens. Jama, 323(18), 1843-1844.

World Health Organization. (9 de octubre del 2020). WHO Coronavirus Disease (COVID-19) Dashboard. https://covid19.who.int/?gclid=CjwKCAjw_Y_8BRBiEiwA5MCBJhROPzfziFPFQFT_QltAEQ_F29AGq Jd21iBevf HeHeVvQCSxUJJJbhoCowwQAvD_BwE

Publicado
2021-10-14
Cómo citar
Bardález-Trigoso, G., Bazán-Arzapalo, J. P., Fabián, J., & Montenegro-Montori, P. (2021). Detección del SARS-CoV-2 en radiografías de tórax por medio de descriptores intermedios y técnicas de machine learning. Actas Del Congreso Internacional De Ingeniería De Sistemas, 123-136. https://doi.org/10.26439/ciis2020.5505