Enfoque colaborativo para resolver el problema de la programación de horarios de asignaturas universitarias
Resumen
Este trabajo propone un enfoque colaborativo para resolver el problema de la programación de horarios de asignaturas universitarias (UCTP). Se desarrolló y utilizó un prototipo para un curso de ciencias de la computación de la Universidad Federal Fluminense de Brasil. La idea principal es que los estudiantes, profesores y coordinadores de asignatura contribuyan de forma colaborativa a la programación de horarios a través de un aplicativo. Estas contribuciones utilizan la heurística, responsable de la programación de horarios, a fin de mejorar la resolución del problema. Se describen los resultados alcanzados y los trabajos futuros.
Descargas
Citas
Abdullah, S., & Turabieh, H. (2008, November). Generating university course timetable using genetic algorithms and local search. In Convergence and Hybrid Information Technology, 2008. ICCIT’08. Third International Conference on (Vol. 1, pp. 254-260). IEEE.
Al-Betar, A., & Khader, A. T. (2012). A harmony search algorithm for university course timetabling. Ann Oper Res, 194, 3-31.
Aladag, C. H., Hocaoglu, G., & Basaran, M. A. (2009). The effect of neighborhood structures on tabu search algorithm in solving course timetabling problem. Expert Systems with Applications, 36, 12349-12356.
Babaei, H., Karimpour, J., & Hadidi, A. (2015). A survey of approaches for university course timetabling problem. Computers & Industrial Engineering, 86, 43-59. Retrieved from http://www.sciencedirect.com/science/article/pii/S0360835214003714 DOI: https://doi.org/10.106/j.cie.2014.11.010
Lima, T. J. B., Martins, C. B., Vianna, D. S., Dianin, M. F. V., & Costa, S. O. (2015). Utilização do método de análise hierárquica (ahp) para definição dos pesos de restrições fracas na re- solução de problemas de programação de horários para uma instituição federal de ensino superior. In Simpósio brasileiro de pesquisa operacional (pp. 1-12).
Pandey, J., & Sharma, A. K. (2016). Survey on university timetabling problem. In 3rd international conference on computing for sustainable global development (indiacom) (pp. 1-64). IEEE. Retrieved from https://ieeexplore.ieee.org/document/7724247/
Parte, Y., Auroux, D., Clément, J., Masmoudi, M., & Hermetz, J. (2013). Collaborative optimization. Multidisciplinary design optimization in computational mechanics, 321-367.
Schaerf, A. (1999). A survey of automated timetabling. Artificial Intelligence Review, 13, 87-127.
Song, T., Sanya, L., Tang, X., Peng, X., & Chen, M. (2018). An iterated local search algorithm for the university course timetabling problem. (To appear in Applied Soft Computing).
Yang, S., & Jat, S. N. (2011). Genetic algorithms with guided and local search strategies for university course timetabling. IEEE Transactions on Systems, Man, and Cybernetics- Part C: Applications and Reviews, 41 (1), 93-106.