Mejora en la gestión de clientes en base a revenue management y RFM en una empresa de transporte interprovincial de pasajeros
Resumen
Este estudio investiga la fijación de precios basada en la demanda mediante el uso de la herramienta recencia-frecuencia-monto (RFM) para analizar el comportamiento del consumidor e incrementar las ganancias en una empresa de transporte. En primer lugar, se predice la demanda para meses representativos mediante el uso de un modelo de pronóstico de serie de tiempos. Luego, se emplean técnicas de revenue management (RM) para establecer precios óptimos. Además, se proponen estrategias promocionales para mejorar la lealtad del cliente y maximizar las ganancias. La eficacia del algoritmo propuesto fue validada mediante experimentos con datos simulados y datos reales, cuyos resultados demuestran que la aplicación de las herramientas RM y RFM conducen a una mejora signifi cativa del 6,99 % en la tasa de ocupación de asientos y un crecimiento del 15,51 % en las ganancias. Este enfoque innovador promete transformar la gestión de ingresos y la planificación estratégica promocional en el sector de transporte.
Citas
Brandizzi, N., Russo, S., Galati, G., & Napoli, C. (2022). Addressing vehicle sharing through behavioral analysis: A solution to user clustering using recency-frequency monetary and vehicle relocation based on neighborhood splits. Information, 13(11), 511. https://doi.org/10.3390/info13110511
Dalalah, D., Khasawneh, M., & Khan, S. (2022). Pricing and demand management of air tickets using a multiplicative newsvendor model. Journal of Revenue and Pricing Management, 21(5), 517-528. https://doi.org/10.1057/S41272-021-00368-1/TABLES/3
Estrada-Esquivel, H., Martínez-Rebollar, A., Wences-Olguin, P, Hernandez-Perez, Y., & Ortiz-Hernandez, J. (2022). A smart information system for passengers of urban transport based on IoT. Electronics, 11(5), 834. https://doi.org/10.3390/electronics11050834
Fan, W., Wu, X., Shi, X. Y., Zhang, C., Hung, I. W., Leung, Y. K., & Zeng, L. S. (2023). Support vector regression model for flight demand forecasting. International Journal of Engineering Business Management, 15, 1-9. https://doi.org/10.1177/18479790231174318
Guerriero, F., Luzzi, M., & Macrina, G. (2021). Revenue management approach for passenger transport service: An Italian case study. En R. Cerulli, M. Dell’Amico, F. Guerriero, D. Pacciarelli & A. Sforza (Eds.), Optimization and decision science. ODS, Virtual Conference, november 19, 2020 (pp. 237-247). Springer. https://doi.org/10.1007/978-3-030-86841-3_20
Handojo, A., Pujaman, N., Santosa, B., & Laksono Singgih, M. (2023). A multi layer recency frequency monetary method for customer priority segmentation in online transaction. Cogent Engineering, 10(1). https://doi.org/10.1080/23311916.2022.2162679
Horita, Y., & Yamashita, H. (2019). Bayesian network considering the clustering of the customers in a hair salon. Cogent Business & Management, 6(1), 1-15. https://doi.org/10.1080/23311975.2019.1641897
Kourentzes, N., Li, D., & Strauss, A. K. (2019). Unconstraining methods for revenue management systems under small demand. Journal of Revenue Pricing Management, 18(1), 27-41. https://doi-org.ezproxy.ulima.edu.pe/10.1057/s41272-017-0117-x
Martí, P., Jordán, J., De la Prieta, F., & Julian, V. (2023). Optimization of rural demand-responsive transportation through transfer point allocation. Electronics, 12(22), 4684. https://doi.org/10.3390/electronics12224684
Oliveira, B. B., Carravilla, M. A., & Oliveira, J. F. (2018). Integrating pricing and capacity decisions in car rental: A matheuristic approach. Operations Research Perspectives, (5), 334-356. https://doi.org/10.1016/j.orp.2018.10.002.
Shaw, S., Chovancová, M., & Bejtkovský, J. (2022). Managing price changes: Role of consumer thinking styles on perceived price fairness and purchase intention. Innovative Marketing, 18(2), 212-223. http://dx.doi.org/10.21511/im.18(2).2022.18
Tang, L., Gan, A., Cevallos, F., & Alluri, P. (2018). Characteristics of bus transit vehicles in the United States: A 30-year national trend analysis. Transportation Research Record, 2672(8), 41-51. https://doi.org/10.1177/0361198118782268
Wilbert, H. J., Hoppe, A. F., Sartori, A., Stefenon, S. F., & Silva, L. A. (2023). Recency, frequency, monetary value, clustering, and internal and external indices for customer segmentation from retail data. Algorithms, 16(9), 396. https://doi.org/10.3390/ a16090396
Yuan, W., & Nie, L. (2020). Optimization of seat allocation with fixed prices: An application of railway revenue management in China. PLoS ONE, 15(4). https://doi.org/10.1371/JOURNAL.PONE.0231706
Zelenkov, Y. A., & Suchkova, A. S. (2023). Predicting customer churn based on changes in their behavior patterns. Business Informatics, 17(1), 7-17. https://doi.org/10.17323/2587-814X.2023.1.7.17