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ABSTRACT. This study addresses the global issue of marine pollution, with a particular 
focus on plastic bag contamination, by leveraging real-time object detection techniques 
powered by deep learning algorithms. A detailed comparison was carried out between 
the YOLOv8, YOLO-NAS, and RT-DETR models to assess their effectiveness in detect-
ing plastic waste in underwater environments. The methodology encompassed several 
key stages, including data preprocessing, model implementation, and training through 
transfer learning. Evaluation was conducted using a simulated video environment, 
followed by an in-depth comparison of the results. Performance assessment was based 
on critical metrics such as mean average precision (mAP), recall, and inference time. 
The YOLOv8 model achieved an mAP50 of 0.921 on the validation dataset, along with 
a recall of 0.829 and an inference time of 14.1 milliseconds. The YOLO-NAS model, by 
contrast, reached an mAP50 of 0.813, a higher recall of 0.903, and an inference time of 
17.8 milliseconds. The RT-DETR model obtained an mAP50 of 0.887, a recall of 0.819, 
and an inference time of 15.9 milliseconds. Notably, despite not having the highest mAP, 
the RT-DETR model demonstrated superior detection performance when deployed in 
real-world underwater conditions, highlighting its robustness and potential for practical 
environmental monitoring.

KEYWORDS: object detection / deep learning / plastic waste / object detection model 
/ underwater images 
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DETECCIÓN DE RESIDUOS PLÁSTICOS SUBMARINOS CON MODELOS 
YOLO Y VISION TRANSFORMER

RESUMEN. Este estudio aborda el problema global de la contaminación marina, con un 
enfoque particular en la contaminación por bolsas de plástico, aprovechando técnicas 
de detección de objetos en tiempo real impulsadas por algoritmos de aprendizaje 
profundo. Se realizó una comparación detallada entre los modelos YOLO v8, YOLO-NAS y 
RT-DETR para evaluar su efectividad en la detección de desechos plásticos en entornos 
submarinos. La metodología abarcó varias etapas clave, incluyendo el preprocesamiento 
de datos, la implementación del modelo y el entrenamiento utilizando aprendizaje por 
transferencia. La evaluación se llevó a cabo a través de un entorno de video simulado, 
seguido de una comparación exhaustiva de los resultados. La evaluación del rendimiento 
se basó en métricas críticas como la precisión promedio (mAP), el recall y el tiempo de 
inferencia. El modelo YOLO v8 alcanzó un mAP50 de 0,921 en el conjunto de validación, 
con un recall de 0,829 y un tiempo de inferencia de 14,1 milisegundos. El modelo YOLO-
NAS, en contraste, alcanzó un mAP50 de 0,813, un recall más alto de 0,903 y un tiempo de 
inferencia de 17,8 milisegundos. El modelo RT-DETR obtuvo un mAP de 0,887, un recall de 
0,819 y un tiempo de inferencia de 15,9 milisegundos. Notablemente, a pesar de no tener 
el mAP más alto, el modelo RT-DETR demostró un rendimiento superior en la detección 
cuando se implementó en condiciones submarinas reales, destacando su robustez y 
potencial para aplicaciones prácticas de monitoreo ambiental.

PALABRAS CLAVE: detección de objetos / aprendizaje profundo / residuos plásticos / 
modelos de detección de objetos / imágenes submarinas
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INTRODUCTION

The National Institute of Statistics and Informatics (2022) identifies water pollu-
tion as a critical environmental issue, with plastic waste posing a growing threat to 
marine ecosystems. The increasing volume of plastic debris—such as bottles and 
bags—accumulating on beaches and seabeds contributes significantly to long-term 
ecological degradation. A major challenge in addressing this problem lies in the 
inaccessibility and high cost of monitoring underwater environments. Autonomous 
underwater vehicles (AUVs) present a promising solution, but their success depends 
on the integration of accurate object detection systems capable of identifying 
submerged plastic waste.

Deep learning has emerged as the leading approach for underwater object detec-
tion, offering real-time performance and high accuracy. However, the complexity 
of underwater environments—including low visibility, variable lighting, and clut-
tered seabeds—hampers detection accuracy (Dhana Lakshmi & Santhanam, 2020). 
Compounding this issue is the lack of diverse and comprehensive datasets, which limits 
model generalizability in real-world conditions (Hong et al., 2020; Panwar et al., 2020).

In response to these challenges, two main categories of object detection algo-
rithms have been explored: one-stage and two-stage models. One-stage models, such 
as You Only Look Once (YOLO), are known for their fast detection speed but tend to 
sacrifice some accuracy. Conversely, two-stage models offer greater precision but at 
the cost of computational efficiency (Conley et al., 2022; Deng et al., 2021). This study 
adopts a one-stage approach, given its balance between speed and accuracy, which 
makes it suitable for practical underwater applications. Additionally, data augmentation 
has been widely used to enhance training datasets (Conley et al., 2022; Deng et al., 2021; 
Zhou et al., 2017). However, models still face challenges due to variable environmental 
conditions, including degraded materials, diverse color ranges, and fluctuating light 
intensities, all of which hinder the accurate detection of plastic debris underwater.

This paper is structured as follows. Section 2 reviews the state of the art, 
covering datasets in underwater environments, underwater object detection algo-
rithms, advanced YOLO-based detection methods, and vision transformer (ViT) object 
detection techniques. Section 3 describes the methodology, detailing the dataset, 
preprocessing, deployment approach, experimental scenarios, and assessment 
criteria. Section 4 presents the experimental results, followed by a discussion of key 
findings in Section 5. Conclusions are drawn in Section 6, and directions for future 
research are presented in Section 7.
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STATE OF THE ART

Datasets in Underwater Environments

The quality and quantity of images in a dataset are critical for the success of deep 
learning models, especially in complex environments like underwater settings. 
However, underwater datasets remain relatively scarce and often lack variation, posing 
challenges for robust model development.

One notable dataset is that of Hong et al. (2020), which comprises 7212 images of 
marine trash captured by a submersible remotely operated vehicle (ROV) in the Sea of 
Japan. It includes segmentation annotations and two versions based on object class 
configurations, offering flexibility for different research needs. Another is AquaTrash, 
developed by Panwar et al. (2020), which is based on the Trash Annotations in Context 
(TACO) dataset. From TACO’s 1500 urban litter images, 369 were reclassified into four 
categories: glass, metal, paper, and plastic. While highly detailed, its urban context and 
limited size restrict its applicability in underwater settings. The Trash-ICRA19 dataset is 
widely used in underwater trash detection. It consists of 5700 images from the Japanese 
Environmental Data Initiative (J-EDI) database, covering 2000 to 2017 and classified 
into three categories. Its variability in image quality, depth, and camera types presents 
challenges for consistent training. The CleanSea dataset, created by Japan Agency for 
Marine-Earth Science and Technology (JAMSTEC), contains 1223 images categorized 
into 19 waste types. Its inclusion of flora and fauna adds complexity, as models must 
differentiate between natural and man-made objects. Moorton et al. (2022) contributed 
a private dataset of 1644 high-quality images featuring medium-sized trash, fishing nets, 
and natural elements, useful for general object classification. Similarly, Xue, Huang, Wei 
et al. (2021) and Xue, Huang, Chen et al. (2021) developed datasets containing 10 000 
and 13 914 images, respectively, covering categories such as plastic, metal, rubber, nets, 
and glass. Although broad in scope, the environmental contexts of these datasets may 
not be exclusively underwater, limiting their specific applicability. Dhana Lakshmi and 
Santhanam (2020) compiled 11 797 manually labeled images from the Indian Ocean, 
captured at depths of 5 to 15 meters, offering targeted insights into marine waste at 
shallow depths. However, its scope might not represent more diverse underwater envi-
ronments. Meanwhile, Zhou et al. (2017) adapted ImageNet—a large dataset with over 
14 million images and 22 000 classes—for underwater recognition by selecting relevant 
categories. Despite its size, its general-purpose nature limits its direct application to 
underwater debris detection.

In summary, while several valuable datasets exist for underwater object detection, 
many are constrained by size, variability, or context. Table 1 presents a summary of the 
key characteristics of these datasets.
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Table 1
Datasets in Underwater Environments

Dataset Images Setting Focus Notes / Limitations

Hong et al. 
(2020) 7212 Underwater Marine trash Flexible object class 

configurations

AquaTrash 369 Urban Glass, metal, paper, 
plastic

Urban context; limited 
underwater applicability

Trash-
ICRA19 5700 Underwater Three categories Variable image quality, depth, 

and camera types

CleanSea 1223 Underwater
19 waste types, 

including flora and 
fauna

Presence of flora and fauna 
increases classification 

complexity

Moorton et al. 
(2022) 1644 Underwater

Medium-sized trash, 
fishing nets, natural 

elements

Private dataset; 
medium-quality images

Xue, Huang, 
Wei et al. 

(2021); Xue, 
Huang, Chen et 

al. (2021)

10 000 & 
13 914 Mixed Plastic, metal, rubber, 

nets, glass
Not exclusively underwater; 

limits specificity

Dhana Lakshmi 
& Santhanam 

(2020)
11 797 Underwater Marine waste Focus on shallow depths; 

limited diversity

Zhou et al. 
(2017)

14+ 
million

General 
(ImageNet) General categories

Extensive but 
general-purpose; limited 

underwater focus

Note. Setting = Image capture location

Underwater Object Detection Algorithm

Underwater object detection using deep learning has made significant progress, 
despite challenges such as low image quality and limited datasets. Researchers have 
explored various convolutional neural networks (CNNs) and object detection frame-
works to improve accuracy and efficiency. Panwar et al. (2020) applied RetinaNet with 
a ResNet-50 backbone and feature pyramid networks (FPNs), using transfer learning 
to enhance performance even with smaller datasets. Similarly, Kavitha et al. (2022) 
achieved 98.2 % accuracy in trash detection using a lightweight three-layer CNN, aided 
by data augmentation and a self-curated dataset.

Other studies have focused on performance under harsh visual conditions. Rizos 
and Kalogeraki (2021) compared basic CNNs and ResNet50v2 in low-light settings, 
highlighting gradient fading. Wu et al. (2020) employed YOLOv4 for real-time detection 
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on ROVs, optimizing speed through lowering video resolution and enhancing image 
clarity using transfer learning and relative global histogram stretching (RGHS). 
Teng et al. (2022) introduced YOLOv5 with “predict boxes” and generalized intersection 
over union (GIoU) loss, improving accuracy on the Trash-ICRA19 dataset. Muksit et al. 
(2022) proposed YOLOFish-1 and YOLOFish-2, which enhanced feature extraction with 
upsampler heads and spatial pyramid pooling (SPP). 

Additionally, Han et al. (2020) improved feature preservation by using CNNs 
with residual blocks, although training stability was an issue. Comparative studies by 
Fulton et al. (2019) and Conley et al. (2022) showed that Faster R-CNN and Mask R-CNN 
excel in accuracy, while YOLO variants offer faster inference, emphasizing the impor-
tance of selecting models based on application-specific trade-offs between speed and 
precision.

Advanced YOLO Object Detection Algorithms

The YOLO architecture has undergone continuous refinement, leading to notable 
improvements in detection accuracy, speed, and efficiency. These advancements have 
established YOLO as a leading framework for real-time object detection across a wide 
range of domains. 

Reis et al. (2023) applied YOLOv8 to aerial image detection, focusing on aircraft 
recognition. They compared different model sizes, finding that the small model offered 
a 0.05-second speed advantage over the medium one, while the large model provided 
only a slight improvement (0.002 seconds). Inference times were 4.1 ms (small), 5.7 ms 
(medium), and 9.3 ms (large). After tuning, YOLOv8 achieved an mAP50-95 of 0.835, 
outperforming previous benchmarks. Li et al. (2023) enhanced YOLOv8 for drone-based 
aerial detection by modifying the loss function, backbone, and neck, resulting in an mAP 
of 91.7 %. However, the model still faced challenges in detecting small objects, such as 
bicycles. Casas et al. (2023) compared YOLOv5 and YOLO-NAS using the Foggia dataset, 
a dataset designed for smoke and wildfire detection. They observed that model size 
correlated with training time—YOLO-NAS small, medium, and large required 2427, 3460, 
and 4375 hours, respectively. All models maintained high recall (0.96), which is critical 
for minimizing false negatives in fire detection. Terven and Córdova-Esparza (2023) 
highlighted YOLO-NAS’s integration of automated neural architecture construction 
(AutoNAC), a neural architecture search (NAS) technique that automates architectural 
optimization. YOLO-NAS also supports 8-bit signed integer (INT8) quantization for 
efficient real-time inference. The study emphasized the evolution of feature extraction 
techniques, from early max pooling to advanced CNN backbones that combine 
multiscale features—such as edges and shapes—into richer feature maps. These devel-
opments significantly enhance YOLO’s adaptability and accuracy in complex, real-world 
detection scenarios.
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ViT Object Detection Algorithms

ViT introduces a new paradigm in computer vision by applying the transformer architec-
ture—originally developed for natural language processing—to image recognition. Like 
YOLO, ViT functions as a one-stage detector, making it suitable for real-time applica-
tions. In contrast to CNNs, which rely on local receptive fields, ViT uses self-attention to 
capture global image context, enabling it to learn complex inter-region dependencies.

Uparkar et al. (2023) compared ViTs and CNNs for lung disease classification using 
X-ray images. When trained from scratch, CNNs outperformed ViTs due to their strong 
inductive biases and better performance with limited data. However, with pre-training, 
ViTs slightly surpassed CNNs, achieving 1 % higher accuracy—highlighting their poten-
tial when sufficient data or optimization is available. In another study, Zhao et al. (2023) 
benchmarked YOLOv6, YOLOv7, YOLOv8, and a custom transformer-based detector 
on the Common Objects in Context (COCO) dataset. Their transformer model intro-
duced two key architectural innovations. First, the encoder included a hybrid attention 
system with two modules: adaptive interaction-focused integration (AIFI), which effi-
ciently focused attention on meaningful image regions, and cross-channel feature 
mixing (CCFM), which preserved fine-grained features from shallow layers. Second, a 
constrained optimization technique was applied to improve query selection, refining the 
model’s attention alignment with actual object locations. These enhancements led to a 
2 % improvement in AP50 and a 50 % increase in processing speed (fps) over YOLOv8, 
demonstrating the transformer model’s superiority in both accuracy and efficiency for 
real-time object detection.

Table 2 groups the key algorithms discussed, offering a comparative overview to 
support understanding of their effectiveness and design differences.

Table 2
Key Object Detection Algorithms

Author(s) Model Key Features Dataset Performance / Results

Reis et al. 
(2023) YOLOv8 Speed/accuracy tradeoff, 

hyperparameter tuning Aircraft mAP50-95: 0.835, 
small model fastest

Li et al. 
(2023)

Modified 
YOLOv8

Custom loss, backbone, 
and neck for drone vision

Drone 
dataset

mAP: 91.7 %, improved 
skyborne object 

detection

Casas et al. 
(2023)

YOLO-
NAS

AutoNAC architecture 
search, INT8 quantization FOGGIA High recall (0.96) 

across all sizes

Teng et al. 
(2022)

YOLOv5 + 
GIoU

Predict boxes, IoU-based 
loss penalization

Trash-
ICRA19

Improved object 
localization

(continúa)
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Author(s) Model Key Features Dataset Performance / Results

Muksit 
et al. (2022)

YOLOFish-1 & 
YOLOFish-2

Upsampler head, SPP 
module with Darknet-53

Trash-
ICRA19

Enhanced feature 
extraction

Zhao et al. 
(2023)

Transform-
er-based 

model

AIFI and CCFM modules, 
optimized query selection COCO

+2 % AP50 over 
YOLOv8, 50 % fps 

boost

Uparkar 
et al. (2023) ViT vs CNN

Self-attention, pretraining 
required for ViT

performance

Lung
X-rays

ViT outperformed CNN 
by 1 % with pretraining

METHODOLOGY

This research followed a structured implementation pipeline for underwater object 
detection, summarized in Figure 1, which outlines the general phases of the detec-
tion workflow. These steps include dataset selection, preprocessing, model selection 
and training, evaluation, and fi nal deployment. The study focuses on analyzing and 
comparing deep learning-based models using metrics such as mean average precision 
(mAP), sensitivity, and execution time.

Figure 1
General Implementation Phases and Workflow
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(continuación)
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System Overview

To illustrate the practical application of the methodological workflow outlined in Figure 
1, Figure 2 depicts the system architecture designed to support scalable and effi cient 
deployment. The design is organized into two main flows: a backend pipeline for serv-
er-side inference and data storage, and a frontend layer for presenting results to users 
via a web interface. A more detailed explanation of this architecture and its operational 
components is provided in Section 3.6.

Figure 2
Cloud-Based Architecture for Deploying the Object Detection Model
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Dataset

For this study, the J-EDI Trash-ICRA19 dataset was selected. It comprises 5720 under-
water images (416 × 416 pixels) featuring a wide range of objects, including marine debris, 
animals, and equipment. The images are unprocessed and contain multiple objects 
of varying complexity. The dataset is categorized into three classes: plastic, remotely 
operated vehicle (ROV) parts, and bio (biological material). This dataset was chosen 
following a comparative review of available underwater datasets (see Section 2.1), where 
Trash-ICRA19 stood out for its balanced combination of sample size, class diversity, 
and high-quality annotations. In contrast to alternatives such as AquaTrash—which is 
focused on urban environments—or CleanSea, which offers fewer samples, Trash-ICRA19 
provides greater contextual relevance for underwater debris detection. Additionally, 
its frequent use in previous research—particularly with models such as YOLOv5 and 
YOLOFish—supports its compatibility with the models employed in this study.
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Preprocessing

For training purposes, the dataset was modified in three main aspects: class distri-
bution, image dimensions, and visual characteristics. First, the “Trash” class was 
prioritized to improve detection metrics, with a focus on identifying objects outside the 
sea. Second, all images were resized to 460 × 460 pixels to ensure compatibility with 
the algorithm. Finally, data augmentation techniques were applied—introducing varia-
tions in noise, mosaic patterns, exposure, and saturation—resulting in a total of 13 000 
training images, as shown in Figure 3.

Figure 3
Training Images with Data Augmentation

Experimental Scenarios

Three experimental scenarios were designed to evaluate model performance using 
mAP, recall, and average inference time. Scenario 1 tests YOLOv8, which is optimized 
for real-time accuracy in low-resource environments. Scenario 2 uses YOLO-NAS, 
which applies neural architecture search to balance speed and precision. Scenario 3 
evaluates RT-DETR, a transformer-based model leveraging attention mechanisms for 
complex scene understanding. These models span a range of modern detection strat-
egies—convolutional, hybrid, and transformer-based—enabling a comprehensive and 
comparative analysis across various deployment contexts.

Training was performed on Google Colab in a graphics processing unit (GPU)-
enabled environment, with datasets accessed directly via Google Drive. PyTorch was 
used for implementation and library management. After training, models were evaluated 
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on a local PC equipped with an NVIDIA GeForce GTX 1660 Ti GPU, utilizing cuDNN to 
optimize performance. Learning rate scheduling was controlled using initial and final 
rates along with the total number of epochs, allowing dynamic adjustment throughout 
the training process.

Deployment

The deployment follows the cloud-native architecture illustrated in Figure 3, designed 
to support scalable, efficient, and low-maintenance operation of the object detection 
system.

The first flow begins at the edge, where a camera-equipped device captures 
underwater images and sends them—along with an authentication token—to the cloud. 
These images are uploaded to cloud storage. Once stored, another serverless func-
tion is triggered to transfer and process the images. A load balancer distributes this 
workload to a pool of multi-instance servers, each hosting the trained detection model. 
These instances analyze the images in parallel and send the results to a message 
queue. The final outputs are handled by a storage service that writes the results into a 
structured database, including metadata and inference information. 

The second flow handles the user-facing interface. Users interact with a web 
application hosted in the cloud. Requests are routed through a content delivery network 
(CDN) and an application programming interface (API) gateway for backend requests. 
The backend is managed by serverless functions. This design ensures low-latency 
access to results, even in low-bandwidth or edge environments. This separation of 
concerns ensures low latency for users by centralizing all computationally intensive 
tasks on the server.

Assessment

This study evaluates object detection models—YOLO variants and RT-DETR—using 
three core metrics: mAP, recall, and average inference time. These metrics were 
selected to provide a balanced analysis of model accuracy, sensitivity, and practical 
deployment speed, particularly in the context of automatic waste detection.

Recall was chosen to assess the model’s sensitivity, i.e., its ability to correctly 
detect all relevant objects. This is especially critical in waste detection tasks, where 
missing objects can negatively affect classification and sorting. Recall is defined 
mathematically as:

(1)Recall = TP / (TP � FN)
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Where:

TP = True positives (correctly detected objects)

FN = False negatives (missed objects)

mAP provides an overall measure of detection accuracy by combining both preci-
sion and recall across different IoU thresholds. The mAP formula is:

(2)mAP = AvePq=1
Q (q) / Q∑

Where:

Q = Number of object queries

AveP(q) = Average precision for query q

Average inference time measures how long the model takes to process an image, 
which is essential for evaluating real-time performance in operational environments. 
This metric helps determine whether a model is suitable for time-sensitive applications.

Together, these three metrics offer a concise and representative framework to 
evaluate model performance in terms of detection accuracy, sensitivity, and processing 
efficiency.

RESULTS

Initial experimentation highlighted the most salient comparative characteristics of the 
evaluated models.

Table 3
Scenarios for Model Comparison

Models mAP50 mAP50-95 Re IT TT

YOLOv8 S 0.821 0.534 0.720 10.1* 3

YOLOv8 M 0.833 0.589 0.750 19.4* 5

YOLOv8 L 0.807 0.564 0.671 35* 13

YOLO-NAS S 0.735 0.668 0.967 2.04 3

YOLO-NAS M 0.736 0.681 0.856 3.14 4

Note. mAP50 = Mean average precision at an IoU threshold of 0.50; mAP50-95 = Mean average precision at 
IoU thresholds from 0.50 to 0.95; Re = Recall (sensitivity); IT = Inference time in milliseconds; TT = Training 
time in hours; inference time marked with an asterisk (*) was measured using NVIDIA GeForce GTX 1660 
Ti GPU.
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Table 3 summarizes the performance of the YOLOv8 and YOLO-NAS models on the 
Trash-ICRA19 dataset. Among YOLOv8 variants, the M variant demonstrated the best 
overall performance, achieving an mAP50 of 0.833, an mAP50-95 of 0.589, a recall of 
0.75, and an inference time of 19.4 ms, making it the most balanced choice for further 
tuning. The S variant followed, offering slightly lower accuracy (mAP50: 0.821) but faster 
inference (10.1 ms). In comparison, the L model had lower recall (0.671) and significantly 
higher inference time (35 ms), indicating less efficiency despite a modest mAP50-95 of 
0.564. In contrast, the YOLO-NAS models excelled in recall, with the S variant achieving 
0.967 and the M variant reaching 0.856. Although their mAP50 values (0.735 and 0.736, 
respectively) were lower than those of YOLOv8, their mAP50-95 scores were competi-
tive. Additionally, both YOLO-NAS models required less training times, with the S and M 
variants completing training in 3 and 4 hours, respectively. These results suggest that 
YOLO-NAS, particularly the S variant, is a practical option under limited computational 
resources, offering strong recall and efficient training while maintaining reasonable 
detection accuracy.

Table 4
Hyperparameter Refinement of YOLOv8 M

P F Bat Mo Ep B lr Ep T mAP50 mAP50-95 Re

- 0 32 Yes 100 0.001 100 0.833 0.589 0.75

P1 0 32 No 46 0.001 50 0.834 0.557 0.72

P2 5 48 Yes 11 0.001 50 0.866 0.626 0.728

P3 5 48 Yes 22 0.0005 50 0.888 0.633 0.808

P4 5 48 Yes 13 0.0001 30 0.906 0.627 0.828

P5 0 32 Yes 18 0.0001 30 0.922 0.644 0.829

Note. P = Test number; F = Number of frozen layers for transfer learning; Bat = Batch size; Mo = YOLO native 
data augmentation; Ep B = Best epoch; lr = Learning rate; Ep T = Total number of epochs; mAP50 = Mean 
average precision at an IoU threshold of 0.50; mAP50-95 = Mean average precision at IoU thresholds from 
0.50 to 0.95; Re = Recall (sensitivity).

Table 4 presents the results of hyperparameter optimization for YOLOv8 M. Five 
tuning scenarios were tested. In P1, disabling native data augmentation resulted in 
performance drops (mAP50 = 0.834, mAP50-95 = 0.557, Re = 0.72), confirming the 
importance of YOLO’s built-in augmentation. Transfer learning was explored by freezing 
different numbers of layers. Tests P2 through P4 revealed that freezing fewer layers and 
reducing the number of training epochs improved performance. In P5, further tuning of 
the learning rate and configuration achieved the best results: mAP50 = 0.922, mAP50-95 
= 0.644, and Re = 0.829.
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Table 5
Hyperparameter Refinement of the YOLO-NAS S Model (30 Epochs)

P Bat Mo Ep B lr mAP50 Re

- 16 Yes 30 0.001 0.682 0.860

P1 16 Yes 28 0.001 0.713 0.916

P2 16 Yes 19 0.001 0.716 0.883

P3 16 Yes 15 0.0005 0.627 0.824

P4 16 Yes 8 0.0001 0.694 0.923

P5 16 Yes 4 0.0001 0.735 0.967

P6 16 Yes 4 0.0001 0.813 0.903

Note. P = Test number; Bat = Batch size; Mo = YOLO native data augmentation; Ep B = Best epoch; lr = 
Learning rate; mAP50 = Mean average precision at an IoU threshold of 0.50; Re = Recall (sensitivity).

Table 5 presents the results of hyperparameter tuning for the S variant of YOLO-NAS. 
The baseline model, trained for 30 epochs, achieved an mAP50 of 0.682 and a recall of 
0.860. Adjustments to the optimizer (Adam), learning rate, and early stopping—particu-
larly in scenarios P1 to P3—led to a notable increase in recall, reaching up to 0.923, while 
mAP values showed moderate variation. Between epochs 8 and 15, mAP remained 
relatively stable, with consistently high recall values. The best overall performance was 
recorded in P6, where the optimizer was changed to stochastic gradient descent (SGD) 
and the confidence threshold was set to 0.25. This configuration resulted in an mAP50 
of 0.813 and a recall of 0.903.

Table 6
Performance Metrics and Characteristics of Selected Detection Models

Models Parameters Layers mAP50 mAP50-95 Re IT

YOLOv8 M 25 902 640 295 0.921 0.644 0.829 14.1

YOLOv8 L 43 691 520 365 0.915 0.650 0.813 19.2

YOLO-NAS S 19 053 888 685 0.813 - 0.903 17.8

RT-DETR L 32 970 476 673 0.887 0.589 0.819 15.9

Note. mAP50 = Mean average precision at an IoU threshold of 0.50; mAP50-95 = Mean average precision at 
IoU thresholds from 0.50 to 0.95; Re = Recall (sensitivity); IT = Inference time in milliseconds.

Table 6 shows that the first scenario, where YOLOv8 M was used to classify and 
detect plastic waste, obtained an mAP50 of 0.921, an mAP50-95 of 0.644, a recall of 
0.829, and an inference time of 14.1 milliseconds. In the second scenario, YOLO-NAS S 
reached an mAP50 of 0.813, a fairly high recall of 0.903, and an inference time of 17.8 
milliseconds. In the third scenario, using RT-DETR L, the model achieved an mAP50 of 
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0.887, an mAP50-95 of 0.589, a recall of 0.819, and an average inference time of 15.9 
milliseconds, slightly lower compared to YOLOv8 M.

Figure 4
Standardized Confusion Matrices of the Models
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Note. The confusion matrix of YOLOv8 is shown on the left, YOLO-NAS in the center, and RT-DETR on the 
right.

Figure 4 presents the detection performance of the three evaluated models. For 
YOLOv8, 85 % of the total garbage instances were correctly identified as true positives, 
corresponding to 719 detections. The remaining 15 %, or 134 instances, were classified 
as false negatives, indicating that they were not detected as garbage despite belonging 
to the target class. Regarding the background class, YOLOv8 exhibited a 100 % false 
positive rate, with 81 background instances incorrectly identified as garbage. Similarly, 
YOLO-NAS correctly detected 80 % of garbage instances, while the remaining 20 % were 
false negatives, i.e., relevant objects were missing. As with YOLOv8, the background 
was entirely misclassified, resulting in a 100  % false positive rate and 81 incorrect 
detections. The RT-DETR confusion matrix showed a comparable trend. It correctly 
identified 79 % of garbage instances as true positives, while 21 % were false negatives. 
Like the other models, the background was completely misclassified, yielding a 100 % 
false positive rate.
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Figure 5
Model Inferences Across Scenarios
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Note. YOLOv8 M inference (top left), YOLOv8 L inference (top right), YOLO-NAS S inference (bottom left), 
and RT-DETR inference (bottom right).

Fi gure 5 illustrates the detections made by the models in a video that resembles a 
real-world environment. Notably, the training dataset consisted of underwater bottom 
trash images captured under very low illumination, unlike a video of a real-world envi-
ronment with much higher illumination. Under these conditions, the RT-DETR model 
demonstrated superior performance in detecting small objects compared to the 
YOLOv8 and YOLO-NAS models.

DISCUSSION

Data augmentation played a vital role in this study, particularly given the medium-sized 
dataset. It enhanced data diversity and improved the models’ ability to generalize to 
unseen scenarios, thereby helping to mitigate overfi tting. Model selection was guid-
ed by computational resources and model complexity. YOLO-NAS S was chosen for 
its training effi ciency, while the M or L variants of other models were employed to 
balance performance with available resources. Traditional approaches such as data-
set splitting and augmentation were prioritized due to hardware constraints. Although 
cross-validation can offer more robust evaluation, it was avoided due to the increased 
computational cost and the characteristics of the dataset.
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During deployment, a key trade-off emerged between video resolution and detec-
tion speed. Higher resolutions reduced false positives by improving visual clarity but 
decreased processing speed (i.e., lower frames per second [FPS]). This trade-off is 
especially relevant in visually challenging environments, such as underwater scenes 
affected by sand or debris. These findings highlight the importance of image prepro-
cessing and resolution tuning in real-world applications.

While precision was a critical evaluation metric, recall proved equally important. 
RT-DETR achieved the highest precision, but YOLO-NAS excelled in recall, ensuring 
broader object detection coverage. In applications like automatic waste detection 
or trash mapping, high precision is especially important: missing items such as 
bottles or hazardous waste can reduce sorting efficiency and pose environmental or 
safety risks. In such cases, detecting more objects—even at the cost of occasional 
false positives—is preferable. This study underscores the importance of balancing 
precision and recall based on task context, highlighting YOLO-NAS’s strength in 
recall-focused scenarios.

These results are consistent with previous research. Terven and Córdova-Esparza 
(2023) highlighted YOLO’s ability to extract key features such as edges and textures—
findings that are validated in this study. Additionally, ViT models performed well 
under visual noise, leveraging attention mechanisms for contextual recognition. This 
supports findings of Maurício et al. (2023), underscoring ViT’s robustness in degraded 
conditions and its value in challenging environments.

CONCLUSIONS

This research successfully achieved its initial objectives. Beyond acquiring the expec-
ted knowledge, the study yielded meaningful conclusions regarding the comparative 
performance of the evaluated models. Training various models with the Trash-ICRA19 
dataset broadened our understanding of deep learning workflows, including critical 
concepts such as epochs, loss functions, and evaluation metrics. A thorough analysis 
of each model’s architecture further enhanced our comprehension of their functionali-
ty from training to real-world deployment. 

Among the models tested, RT-DETR demonstrated the most promising perfor-
mance in practical scenarios. Although it did not achieve the highest validation scores 
on the dataset, its superior real-world performance underscores the importance of 
evaluating models in real environments, where traditional metrics may not fully capture 
practical effectiveness. 

To address the limitations posed by resource-constrained environments, this 
study proposed offloading the recognition logic to a powerful cloud or edge server. 
While this approach introduces potential latency due to data transmission, it allows 
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the use of more complex and accurate models that would otherwise be infeasible on 
low-power devices. 

In conclusion, RT-DETR proves to be a reliable starting point for underwater 
waste detection, especially in identifying garbage bags. Its successful deployment 
in real-world scenarios—such as the beaches of Bali—demonstrates its potential for 
integration into ROVs. These systems could be used to detect and map plastic waste 
accumulation zones, thereby contributing to more efficient and targeted environmental 
cleanup efforts. 

FUTURE RESEARCH

Several enhancements are recommended for future research. First, increasing the 
resolution of input images may improve object detection accuracy. Incorporating a 
classification component would further enhance system capabilities to identify speci-
fic waste types, such as garbage bags, wrappers, or bottles. Additionally, using a new 
or more diverse dataset—ideally one tailored to underwater conditions—would support 
better model robustness and generalization. 

Another key area for improvement is the reduction of transmission delays. This 
could be achieved by initially lowering image resolution to enable faster transmission 
and then applying a super-resolution algorithm on the server to enhance image quality 
before feeding it into the detection model. In this way, computational load is entirely 
offloaded to high-performance servers, optimizing both speed and accuracy.
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