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ABSTRACT. Air pollution is a major problem that affects both human health and the 

environment, causing millions of premature deaths annually worldwide and severely 

degrading the state of the planet. Exposure to fine particulate matter, which is highly 

hazardous, enables these particles to penetrate deeply into the lungs and lead to serious 

health issues, including a reduction in life expectancy by more than two years. In respon-

se to this problem, it is crucial to identify effective ways to monitor the levels of these 

pollutants in our daily surroundings. This article presents a case study conducted in the 

district of San Borja, Lima, Peru, where prediction models for PM2.5 and PM10 were 

implemented using the XGBoost and LightGBM algorithms. Employing data from the 

SENAMHI portal and a correlation analysis of variables, two different scenarios were 

developed for training the models. In scenario 1, prediction models for PM2.5 and PM10 

were trained using all available meteorological and pollution variables. In scenario 2, the 

models were trained for PM2.5 excluding the PM10 variable, and vice versa. The results 

showed that both models achieved high accuracy, measured by the coefficient of deter-

mination, with no statistically significant difference indicating the superiority of either 

model. Furthermore, the analysis of the proposed scenarios revealed that excluding key 

variables can result in significantly less accurate predictions, potentially undermining 

the effectiveness of environmental management strategies. 

KEYWORDS: air pollution / air quality / meteorological data / machine learning / 
XGBoost / LightGBM 
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PREDICCIÓN DE CONCENTRACIONES DE PM2.5 Y PM10 UTILIZANDO LOS 
ALGORITMOS XGBOOST Y LIGHTGBM: UN ESTUDIO DE CASO EN LIMA, PERÚ

RESUMEN. La contaminación del aire es un problema importante que afecta tanto a la 

salud humana como al medio ambiente, causando millones de muertes prematuras 

anualmente en todo el mundo y degradando severamente el estado del planeta. La 

exposición a material particulado fino, altamente peligroso, permite que estas partículas 

penetren profundamente en los pulmones y provoquen problemas de salud graves, 

incluyendo una reducción en la esperanza de vida de más de dos años. En respuesta 

a este problema, es crucial identificar formas efectivas de monitorear los niveles 

de estos contaminantes en nuestro entorno diario. Este artículo presenta un estudio 

de caso realizado en el distrito de San Borja, Lima, Perú, donde se implementaron 

modelos de predicción para PM2,5 y PM10 utilizando los algoritmos XGBoost y 

LightGBM. Empleando datos del portal del SENAMHI y un análisis de correlación de 

variables, se desarrollaron dos escenarios diferentes para el entrenamiento de los 

modelos. En el escenario 1, se entrenaron modelos de predicción para PM2,5 y PM10 

utilizando todas las variables meteorológicas y de contaminación disponibles. En el 

escenario 2, los modelos se entrenaron para PM2,5 excluyendo la variable PM10, y 

viceversa. Los resultados mostraron que ambos modelos lograron una alta precisión, 

medida por el coeficiente de determinación, sin diferencias estadísticamente 

significativas que indicaran la superioridad de alguno de los modelos. Además, el 

análisis de los escenarios propuestos reveló que excluir variables clave puede resultar 

en predicciones significativamente menos precisas, lo que podría comprometer la 

efectividad de las estrategias de gestión ambiental.

PALABRAS CLAVE: contaminación del aire / calidad del aire / datos meteorológicos / 
aprendizaje automático / XGBoost / LightGBM
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1. INTRODUCTION

Air pollution is a global problem that affects both human health and the environ-

ment. According to the World Health Organization (WHO, 2022), the combined effects 

of ambient and household air pollution are responsible for approximately 6,7 million 

premature deaths annually worldwide. Furthermore, WHO data reveals that 99 % of 

the global population breathes air with pollutant concentrations exceeding the levels 

established by WHO guidelines, with low- and middle-income countries being the most 

affected.

Exposure to fine particulate matter —one of the most harmful air pollutants for 

human health— enables these particles to penetrate deeply into the lungs, triggering 

reactions on lung surfaces and in defense cells, according to the Pan American Health 

Organization (PAHO, 2016). As mentioned by Sloss & Smith (2000), PM10 and PM2.5 

refer to particulate matter with diameters of 10 microns or less and 2.5 microns or less, 

respectively. These particles originate from various chemical species emitted by both 

natural and human sources, including coal-fired power plants, industrial activities, and 

road transport. They can be emitted directly or formed through atmospheric chemical 

reactions. Increased concentrations of this particulate matter pose a serious threat to 

human health.

The Ministerio del Ambiente (MINAM – Ministry of the Environment of Peru) has 

acknowledged the severity of air pollution in the country, noting that mobile sources, 

mainly vehicles, account for 58 % of particulate matter emissions, followed by statio-

nary sources (26 %), and area sources (16 %) (MINAM, 2021).

Studies by MINAM (2021) and WHO (2021) highlight that prolonged exposure to fine 

particles can reduce life expectancy by more than two years. Addressing this issue 

requires the development of accurate air quality prediction methods that can help 

mitigate its effects. In this context, there is a growing need to explore advanced approa-

ches that leverage detailed meteorological data and machine learning (ML) techniques. 

These models offer significant benefits over traditional approaches, as they are both 

cost-effective and computationally efficient. Research on estimating pollutant concen-

trations remains highly active, with efforts focused on reducing reliance on sensors and 

networks by using approximate predictions. Thus, various machine learning models 

have been applied for this purpose.

Researchers like Wang et al. (2023),  and Gryech et al. (2020) have reported impro-

vements in pollution estimation accuracy by through the incorporation of ng more 

detailed meteorological data, such as wind speed and wind direction. They also further 

suggest that, in the presence of large datasets, deep learning models should be prio-

ritized over traditional ML models when working with large datasets. According to 

Cordova et al. (2021), while several studies have been focusing on applying machine 
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learning methods to forecast air quality in large cities, there is a limited number of 

studies of such research in the context of Lima, Peru, a city that ranks among the most 

populated in South America.

XGBoost and LightGBM are advanced machine learning algorithms used for 

predicting air quality, especially PM2.5 and PM10 concentrations, offering superior 

performance through efficient optimization and memory usage. XGBoost excels in 

computational efficiency, while LightGBM's leaf-wise growth strategy helps it handle 

large datasets effectively, making both suitable for robust, computationally efficient air 

quality prediction models.

Based on the previous context, a case study is proposed to predict fine particles 

PM2.5 and PM10 using the XGBoost and LightGBM algorithms. Data will be collected 

through the Servicio Nacional de Meteorología e Hidrología (SENAMHI – National 

Meteorology and Hydrology Service of Peru) web portal, specifically from the San Borja 

station. Using this data and two scenarios developed from a correlation analysis, predic-

tion models will be implemented and evaluated using different performance metrics to 

conduct a comparative analysis. 

This research article adopts a classical structure, beginning with the state of 

the art, where key variables in pollution estimation are reviewed, various prediction 

algorithms are explored, and relevant data processing techniques are discussed. The 

methodology focuses on the study area in San Borja, using SENAMHI datasets that 

include meteorological and pollutant data, refined and integrated to identify significant 

correlations. During the experimentation phase, the integrated dataset is normalized 

and divided to apply methods such as XGBoost and LightGBM, evaluating the models 

according to specific criteria. The results are discussed in detail in relation to the 

hypotheses posed, and conclusions summarize the study’s key findings. Finally, future 

research is proposed, addressing potential methodological improvements or new areas 

of application. 

2. STATE OF THE ART 

The state of the art provides an updated and comprehensive overview of the study topic. 

In this regard, this section presents a structured analysis of the existing literature. First, 

the databases commonly used in this field are described, detailing their names, varia-

bles, number of records, frequency, location, and data collection periods. Subsequently, 

ML algorithms applied in various research articles are discussed, including the metrics 

used and their respective results.

2.1 Identified Variables in Pollution Estimation 
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The relevance of meteorological data in developing prediction models has been well 

established. For example, temperature and solar radiation influence the formation of 

ground-level ozone, while wind direction and wind speed affect the dispersion of pollutants 

and their impact across different geographical areas. Moreover, precipitation signifi-

cantly contributes to the dispersion and removal of atmospheric pollutants, as it washes 

away particles and clears the air. Additionally, relative humidity plays a role in the reac-

tivity and chemical transformation of pollutants (Zhang et al., 2020; Gryech et al., 2020; 

Ameer et al., 2019).

Furthermore, besides finding a strong correlation between PM10, PM2.5, nitrogen 

dioxide (NO2), and carbon monoxide (CO) concentrations and meteorological conditions, 

a significant seasonal correlation was observed between atmospheric pollutants and 

temperature. Specifically, during winter, the concentrations of these pollutants were 

found to be double those recorded in summer (Gryech et al., 2020). However, some studies 

have analyzed the importance of incorporating data related to vehicular flow when predic-

ting air quality. According to Gryech et al. (2020), greater accuracy can be achieved by 

combining meteorological data with traffic-related data to estimate unmeasured pollutant 

concentrations.

Additionally, Sulaimon et al. (2022) conducted a research experiment where 

several air pollution prediction models were trained based on different ML algorithms. 

In scenario 1, only air quality and meteorological data was used to process the dataset, 

whereas in scenario 2, an experimental dataset that included traffic data was employed. 

The results consistently showed that models trained with the experimental dataset 

outperformed those trained with the control dataset. A performance improvement of 

at least 20 % and an error reduction of at least 18.97 % were observed in 98 % of the 

ML algorithms when trained with a dataset containing traffic-related information. These 

findings underscore the significant impact of traffic data on improving the performance of 

ML-based air pollution prediction models (Sulaimon et al., 2022).

For this study, datasets provided by SENAMHI, which include pollutant and meteoro-

logical data, were selected. These datasets are particularly relevant because they provide 

specific information about the study area of interest—in this case, Lima, Peru.

2.2 Prediction Algorithms 

Zhang et al. (2020) achieved positive results with their proposed distributed hybrid 

system of fixed and IoT sensors for predicting air quality. When comparing the applied 

algorithms—support vector regression (SVR), random forest regression (RFR), and 

gradient boosting regression (GBR)—the latter yielded the best results, with an RMSE of 

13.8375 for PM10 predictions and 11.225 for PM2.5 predictions.

In contrast, Gryech et al. (2020) used accuracy as the evaluation metric to compare 

the techniques employed, with the random forest (RF) algorithm achieving high accuracy: 
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94 %, 97 %, and 98 % for pollutants NO2, PM10, and PM2.5, respectively. Additionally, they 

demonstrated that certain pollutants can be accurately predicted based on the concen-

trations of other pollutants. A key finding was that NO2 concentration could be predicted 

based on PM10 concentration and vice versa. They concluded that the RF algorithm is 

highly flexible and shows less variation compared to individual decision trees.

For Gokul et al. (2023), the gradient-boosting regression model (XGBoost) emerged 

as the ML algorithm that delivered the best results, obtaining a mean absolute error 

(MAE) of 7.01, a mean squared error (MSE) of 93.55, and an RMSE of 9.67. Sulaimon et al. 

(2022), on the other hand, achieved a performance improvement of at least 20 % and an 

error reduction of 18.97 % by including traffic flow-related data into the training of diffe-

rent ML models. They also observed varying behaviors and performances across the 

algorithms, with no single algorithm consistently yielding the best results overall. Their 

findings were primarily influenced by variations in the study areas and the combinations 

of datasets used. 

Finally, according to Liu et al. (2023), the LightGBM model was employed to predict 

the atmospheric concentration of PM2.5 by optimizing its parameters. After analyzing 

monitoring data from various times and regions, the prediction curve of haze concentra-

tion indicated that the model exhibited strong learning capability, a high degree of fit, and 

significant improvement in both accuracy and stability. It has been demonstrated that 

optimization with this algorithm significantly enhances precision. The improved model is 

highly applicable in practice and is suitable for forecasting PM2.5 concentrations, offe-

ring valuable insights for predicting trends in air quality changes. 

2.3 Data Processing Techniques 

Several data processing techniques frequently used in the analyzed research can be iden-

tified. First, data cleaning involves detecting and correcting errors, outliers, or missing 

data to improve the quality and reliability of the dataset. It remains one of the most widely 

used techniques across various datasets (Gryech et al., 2020; Cordova et al., 2021; Gokul 

et al., 2023; Ayus et al., 2023). This technique includes several sub-techniques, such as 

outlier detection and data interpolation, among others. 

On the other hand, data integration is a technique that involves combining multiple 

data sources into a single, coherent dataset. This approach provides a more holistic view 

of the data by combining different variables and features, and its application is consi-

dered essential for effective data processing (Gokul et al., 2023; Gryech et al., 2020; 

Sulaimon et al., 2022). 

In the studies by Zhang et al. (2020), Liang et al. (2020), and Ayus et al. (2023), data 

normalization is commonly highlighted as a method used to scale variable values within 

a specific range, facilitating the comparison and analysis of variables within the same 

context. 
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Several key findings from the research on atmospheric pollution estimation stand 

out. The critical role of meteorological data —especially variables such as temperature, 

wind direction, wind speed, and precipitation in the formation and dispersion of pollu-

tants— has been demonstrated. Additionally, a strong seasonal correlation between 

atmospheric pollutants and temperature has been observed, underscoring the signifi-

cant impact of weather conditions on air quality. The studies have also highlighted the 

need to integrate multiple data sources to achieve more accurate and robust results. 

These findings underline the complexity and multidimensionality of the atmospheric 

pollution problem, providing a solid foundation for the implementation of advanced ML 

models in future research.  

3. METHODOLOGY 

This section outlines the key procedures derived from a review of the aforementioned 

literature. Based on the research by Sulaimon et al. (2022), Gryech et al. (2020), Ayus 

et al. (2023), Yang et al. (2018), and Ameer et al. (2019), the methodology began with a 

systematic review of the state of the art in air quality prediction, followed by the data 

collection, which encompassed a wide range of pollutant concentrations and meteoro-

logical data. A comprehensive exploratory analysis was performed on these datasets, 

including a descriptive analysis, evaluation of missing data, and exploration of correla-

tions between variables. 

The data preprocessing phase included integrating, transforming, cleaning, and 

normalizing the extracted datasets, followed by the variable selection process. Finally, 

prediction models were developed, and the performance of the trained models was 

evaluated through a comparative analysis. 

Figure 1

Methodological Design



Interfases n.o 20, diciembre 2024190

J. A. Oblitas, E. J. Escobedo

3.1 Study Area

The study area for training and testing the proposed approach is located in the province 

of Lima, Peru, specifically in the district of San Borja, as shown in Figure 2. Given its high 

traffic density and diverse lane distribution, San Borja is considered an ideal location 

for this study, as it also houses a variety of regulatory and commercial facilities. The 

air quality monitoring station is managed by SENAMHI, under the Dirección de Redes 

de Observación y Datos (Directorate of Observation Networks and Data). This station 

has been operational since May 26, 2010, and is located at coordinates 12.10859 latitude 

and 77.00769 longitude. 

The data collected from the San Borja station spans from the start of its operation 

to the present date. It is important to note that this data is presented in its raw form, 

meaning it has not undergone any quality control process. Therefore, applying necessary 

corrections is deemed essential to minimize any negative impact on the results. 

The dataset comprises 11 input variables, including temperature, relative humidity, 

wind direction, wind speed, precipitation, CO, nitrogen oxides (NO𝑥), ozone (O3), sulfur 

dioxide (SO2), and particulate matter (PM2,5 and PM10). 

Figure 2 

Map Showing the Study Area and the Location of the Air Quality Monitoring Station in San Borja 

3.2  Datasets 

Two datasets were examined, both describing pollutant concentrations and meteorologi-

cal conditions for the same period and area. The data was recorded through the San Borja 

monitoring station and provided by SENAMHI (2024), with public access via their web portal. 

The first dataset includes hourly observations from January 1 to April 30, 2024, 

measuring atmospheric pollutant concentrations, expressed in micrograms per cubic 

meter (µg/m³) for PM2.5, PM10, NO2, O3, and CO. It consists of a total of 2810 records. 



Interfases n.o 20, diciembre 2024 191

Prediction of PM2.5 and PM10 Concentrations Using XGBoost and LightGBM Algorithms

The second dataset contains meteorological variables such as temperature (in 

degrees Celsius), precipitation (millimeters per hour), relative humidity (percentage), 

wind direction (degrees), and wind speed (meters per second). It includes 2841 records.

3.3  Data Refinement 

Based on the work of Sulaimon et al. (2022), data refinement was applied, which invol-

ves handling missing data and cleaning outliers. In the pollutant dataset, four missing 

records were identified, specifically in the NO2 variable. Similarly, the meteorological 

dataset showed missing values for the temperature and humidity variables, with one 

missing record for each. Given the small number of missing records relative to the total 

dataset size, these records were removed to maintain data consistency. 

Additionally, it was observed that 98.9 % of the records for the precipitation variable 

had a value of zero. This unusually high proportion suggests a possible anomaly in data 

capture, potentially indicating a malfunction of the measurement device during the 

observation period. Therefore, the precipitation column was removed to prevent misin-

terpretation or bias in further analyses. 

For outlier detection, the multidimensional outlier detection method was employed, 

specifically the local outlier factor (LOF) method, which is widely recognized for its ability 

to identify anomalous points in multidimensional datasets. In this case, a contamination 

parameter of 0.1 was used.  

3.4 Data Integration 

According to Sulaimon et al. (2022), the use of multiple datasets requires a data integra-

tion process to ensure the information can be accessed through a unified repository. For 

this purpose, the datasets were processed and integrated. The common reference points 

were the date and time features. Below, Table 1 shows an initial fragment of the integra-

ted dataset, while Table 2 provides a description of each feature.  

Table 1 

Header of the Integrated Dataset 

N.o PM10 PM2,5 NO2 O3 CO Tempera-
ture

Humidity Wind 
Direction

Wind 
Speed

0 31.0 14.4 15.3 11.6 332.4 21.9 85.0 168 2.1 

1 32.0 14.9 11.8 12.6 226.8 21.5 87.0 184 1.3 

2 25.8 10.8 9.6 15.3 242.7 22.0 83.0 183 0.8 

3 23.7 11.8 9.2 35.9 181.7 26.2 67.0 276 1.0 

4 25.5 12.7 11.2 39.1 188.6 26.6 68.0 210 0.7 
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Table 2 

Data Dictionary

Variable Unit Data Type Description 

PM2.5 µg/m³ Float Contains numerical data represented as float-
ing-point values with units of micrograms per 
cubic meter (µg/m³). This feature measures the 
concentration of fine particles in the air with a 
diameter of 2.5 micrometers or less. 

PM10 µg/m³ Float Contains numerical data represented as float-
ing-point values with units of micrograms per 
cubic meter (µg/m³). This feature measures the 
concentration of fine particles in the air with a 
diameter of 10 micrometers or less. 

NO2 µg/m³ Float Contains numerical data represented as float-
ing-point values with units of micrograms per 
cubic meter (µg/m³). This feature measures the 
concentration of nitrogen dioxide in the air. 

O3 µg/m³ Float Contains numerical data represented as float-
ing-point values with units of micrograms per 
cubic meter (µg/m³) or parts per million (ppm). It 
measures the concentration of ozone in the air. 

CO µg/m³ Float Contains numerical data represented as float-
ing-point values with units of micrograms per 
cubic meter (µg/m³) or parts per million (ppm). It 
measures the concentration of carbon monoxide 
in the air. 

Temperature Degrees 
Celsius

Float Stores numerical data in floating-point format 
with units of degrees Celsius (°C). These values 
represent the ambient temperature at the time of 
measurement. 

Humidity Percentage Float Recorded as floating-point numerical values with 
units of percentage (%). It indicates the level of 
relative humidity in the air at the time of measure-
ment.

Wind Direc-
tion 

Degrees Float Stored as floating-point numerical data with units 
of degrees (°). This feature indicates from where 
the wind is coming at the time of measurement. 

Wind Speed m/s Float Contains numerical data in floating-point format 
with units of meters per second (m/s). It rep-
resents the wind speed at the time of measure-
ment. 

3.5  Exploration of Correlations 

Based on the work of Bai et al. (2016), an analysis of correlations between pollutant 

variables and meteorological variables was conducted, revealing several significant rela-

tionships that provide valuable insights into the factors influencing air quality. First, PM10 

and PM2.5 were highly correlated with each other (0.8), indicating a strong association 

in their concentration levels. This was expected, as both are particles of similar size and 

share common emission sources, such as fossil fuel combustion and industrial activities. 
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On the other hand, NO2 showed a relatively high correlation with CO at 0.69. This is 

because both substances are emitted during combustion processes and are influenced 

by similar factors, such as traffic density and meteorological conditions. 

Wind direction and wind speed showed moderate correlations with other variables. 

This indicates that wind conditions can influence the dispersion of pollutants in the air. 

Stronger winds or favorable wind directions are likely to promote greater dispersion of 

pollutants, while weak winds may result in the accumulation of pollutants in a specific area. 

Finally, a high negative correlation was found between temperature and humidity 

(-0.89). This inverse relationship is consistent with basic principles of physics, where the 

air’s capacity to hold moisture decreases as temperature increases. This result unders-

cores the important role of temperature and humidity in the formation and dispersion of 

atmospheric pollutants. 

Table 3 

Correlation Map Between Pollution and Meteorological Variables 

Variables PM10 PM2.5 NO2 O3 CO T H WD WS

PM10 1 0.79 0.60 -0.43 0.72 -0.03 -0.15 0.11 -0.15 

PM2,5  1 0.49 -0.30 0.61 -0.07 -0.01 0.14 -0.27 

NO2   1 -0.14 0.69 0.30 -0.39 0.18 0.03 

O3    1 -0.28 0.58 -0.42 0.15 0.21 

CO     1 0.17 -0.28 0.20 -0.17 

T      1 -0.89 0.24 0.19 

H       1 -0.24 -0.22 

WD        1 -0.37 

WS         1 

Note. T represents temperature (°C), H represents humidity (%), WD represents wind direction (°), and WS 
represents wind speed (m/s). 

Based on the analysis, two scenarios were created for the experimental phase of 

this study. In scenario 1 (S1), prediction models for PM2.5 and PM10 were trained using 

all available meteorological and pollution variables. In scenario 2 (S2), prediction models 

were developed separately for PM2.5, excluding the PM10 variable, and for PM10, exclu-

ding the PM2.5 variable. This approach aims to assess the impact that each variable has 

on the training of the other. 

4. EXPERIMENTATION 

Below is a detailed explanation of the workflow involved in the development of the predic-

tion models. 
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• Dataset: The data was collected hourly at the San Borja meteorological moni-

toring station (SENAMHI) from January 1 to April 30, 2024. The integrated 

dataset included two categories —meteorological and pollution data— used 

as input variables. PM2.5 and PM10 were considered as the output variables. 

• Normalization: As shown in Table 4, the dataset contains values with varying 

ranges. Therefore, the data is normalized. Normalization involves adjusting the 

scale of the data from its original range to a range between 0 and 1. Table 4 

presents detailed statistics of the input and output variables used in this study. 

For this case, the standard scaling strategy was employed, with each value in 

the dataset normalized as follows: 

𝑥𝑥𝑥𝑥𝑥𝑥𝑥
𝜎𝜎z𝑥= (1)

where 𝑧 represents the scaled value, x is the original value, 𝜇 is the mean, and 

𝜎 represents the standard deviation of the dataset. 

• Data Split: According to research by Shakya et al. (2023), Liu et al. (2023), 

Ayus et al. (2023), Zhang et al. (2023), and Liang et al. (2020), the dataset was 

divided into training and testing sets, with 80 % of data used for training and 

the remaining 20 % for testing, following the Pareto principle, as noted by one 

of the authors. Table 4 presents the dataset statistics used to predict PM2.5 

concentrations. 

• Methods: This study used conventional ML methods, such as XGBoost and 

LightGBM, to predict PM2.5 concentrations in San Borja. The results from these 

models were compared to assess their accuracy and effectiveness. 

• Model Evaluation Criteria: Shakya et al. (2023), Martín-Baos et al. (2022), 

and Pan (2018) used different metrics to evaluate their models. In this study, 

performance metrics such as coefficient of determination (R²), RMSE, relative 

root mean square error (RRMSE), and MAPE were applied. The descriptions, 

formulas, and ranges of performance metrics are shown in Table 5. 

• Technical Specifications: Python was chosen for the experimental phase due 

to its extensive access to key libraries such as Pandas, NumPy, and Scikit-

learn, as well as other libraries specific to the ML algorithms applied in this 

work. 
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Table 4 

Data Statistics

Dataset Variables Minimum Maximum Mean
Standard 
Deviation

25 % 50 % 75 %

Target 
Data

PM2.5 6.70 26.10 15.11 3.6842 12.40 14.70 17.40

PM10 17.50 109.20 51.45 19.2692 37.10 47.40 63.80

Pollutants NO2 4.50 41.80 21.02 7.0858 15.80 20.85 25.90

O3 4.00 45.40 16.37 9.6222 6.60 15.30 23.80

CO 101.20 1360.50 631.95 240.6815 458.90 632.50 810.80

Meteoro-
logical

Temperature 18.50 31.50 24.36 2.5980 22.40 23.90 26.30

Humidity 48.00 98.00 77.03 10.7499 68.00 79.00 86.00

Wind Direction 104.00 310.00 203.44 36.2904 179.00 191.00 227.25

Wind Speed 0.00 2.70 1.02 0.6063 0.60 0.90 1.40

Based on Table 4, relevant information can be observed. First, the variability of 

PM2.5, with a standard deviation of 3.6842, suggests significant daily fluctuations in air 

quality. It can also be noted that the median (14.70) is close to the mean (15.11), indicating 

a relatively symmetrical distribution of the data.

The presence of other pollutants —such as PM10, NO2, O3, and CO— along with 

their respective variations and standard deviations provides a framework for understan-

ding potential correlations between these pollutants and PM2.5. For example, the high 

standard deviation of CO (240.6815) indicates significant fluctuations that could have a 

substantial impact on PM2.5 levels. On the other hand, meteorological conditions are 

crucial factors affecting the dispersion and concentration of pollutants. For instance, the 

temperature with a mean of 24.36 and a standard deviation of 2.5980 suggests some 

stability, but fluctuations can still influence PM2.5 levels. Wind speed, although low on 

average (1.02 m/s), shows variations that can disperse pollutants.

Table 5 

Formulas, Descriptions, and Ranges of Performance Metrics

Metric Formula Description Range

R2

It is a widely 
used metric that 
indicates how well 
the trends of the 
model simulation 
match the trends 
of the actual data.

0 ≤ R2 ≤ 1
(Higher values 
indicate better 
performance)

MAE

Quantifies the dis-
persion between 
the actual values 
and the predicted 
values.

0 ≤ MAE ≤ ∞
(Lower values 
indicate better 
performance)

(continúa)
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Metric Formula Description Range

RRMSE

Calculated by 
dividing the RMSE 
value by the mean 
of the actual 
values.

0 ≤ RRMSE ≤ ∞
(Lower values 
indicate better 
performance)

MAPE

It is a statisti-
cal measure 
that provides a 
benchmark for 
the accuracy of a 
prediction model.

Lower values 
indicate better 
performance

Note. ai represents the actual values, pi represents the predicted values, ā represents the mean of the actual 
values, p represents the mean of the predicted values and n represents the number of observations (Shakya 
et al., 2023).

4.1  Model Development 

For the training process of each model, 100 iterations were performed to adjust the 

hyperparameters and obtain optimal results. This adjustment was carried out using 

RandomizedSearchCV, an efficient random search technique that systematically explo-

res the hyperparameter space. Each hyperparameter is defined within a specific range, 

determining the values it can take during the random search process. The ranges used 

are shown in Table 6. 

Table 6 

Hyperparameter Values

Algorithm Hyperparameter Range of Values

XGBoost and 
LightGBM

n_estimators Random integer between 20 and 150. This hyperparameter 
controls the number of estimators (trees) used in the model. 

XGBoost max_depth Random integer between 3 and 12. This parameter de-
termines the maximum depth of each tree in the model, 
influencing its complexity and ability to fit the data.

XGBoost and 
LightGBM

learning_rate Random continuous value between 0.05 and 0.35. This 
learning rate controls the magnitude of updates to the model 
weights in each iteration, affecting the speed and accuracy 
of training.

XGBoost and 
LightGBM

colsample_by-
tree

Random continuous value between 0.5 and 1.0. This param-
eter determines the percentage of features to consider for 
each tree during training, helping to control overfitting.

XGBoost and 
LightGBM

subsample Random continuous value between 0.5 and 1.0. This hyper-
parameter specifies the percentage of samples (instances) 
to consider for each tree during training, helping to control 
overfitting and improve model generalization.

(continuación)

(continúa)
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Algorithm Hyperparameter Range of Values

XGBoost and 
LightGBM

reg_alpha Random continuous value between 0.05 and 9.95. This 
parameter controls the strength of L1 regularization (Lasso 
regression) in the model, helping to prevent overfitting by 
penalizing large coefficients.

LightGBM reg_lambda Random continuous value between 0.05 and 9.95. Similar to 
reg_alpha, this parameter controls the strength of L2 regu-
larization (Ridge regression) in the LightGBM model.

XGBoost min_child_
weight

Random continuous value between 1 and 19. This hyperpa-
rameter sets the minimum weight required to create a new 
partition in a tree node during the growth process, influenc-
ing the complexity and structure of the final tree.

LightGBM min_child_sam-
ples

Random integer between 20 and 50. This hyperparameter 
sets the minimum number of samples required to create 
a new partition in a tree node during the growth process, 
affecting the structure and complexity of the final tree.

LightGBM num_leaves Random integer between 31 and 100. This parameter deter-
mines the maximum number of leaves allowed in each tree 
of the model, affecting its complexity and adaptability.

5.  RESULTS 

This section presents an analysis of the results from the models developed to predict 

PM2.5 and PM10 concentrations. First, the performance of the models is evaluated using 

the mentioned metrics and considering the proposed scenarios informed by the corre-

lation analysis. Next, residual and scatter plots related to these results are included. 

Finally, a paired t-test is conducted to statistically assess potential differences between 

the algorithms under study.

Table 7 

Performance of XGBoost and LightGBM Models for PM2.5 and PM10 Predictions: A Scenario 
Comparison 

XGBoost LightGBM

R2 MAE RRMSE MAPE R2 MAE RRMSE MAPE

S1
PM2.5 
PM10

0.75
0.84

1.6376
6.6538

0.1454
0.1595

10.0227
12.2376

0.75
0.83

1.654
6.7814

0.1474
0.1632

10.1317
12.4313

S2
PM2.5 
PM10

0.54 
0.69

2.1142 
8.9187

0.1810 
0.2156

13.6036 
17.1318

0.55 
0.68

2.1367 
8.9814

0.1810 
0.2190

13.7412 
17.0944

Table 7 compares the performance of the XGBoost and LightGBM models in 

predicting PM2.5 and PM10 concentrations across the proposed scenarios. In S1, the 

(continuación)



Interfases n.o 20, diciembre 2024198

J. A. Oblitas, E. J. Escobedo

results for PM2.5 prediction are quite similar, with both models achieving an R² of 0.75. 

However, XGBoost shows a slight advantage in some metrics, such as MAE, where it 

records a slightly lower value (1.6376) compared to LightGBM (1.654). Similarly, XGBoost 

exhibits slightly lower RRMSE and MAPE values, at 0.1454 and 10.0227, respectively, 

compared to 0.1474 and 10.1317 for LightGBM. On the other hand, for PM10 predic-

tion, XGBoost demonstrates a slightly superior performance, with an R² value of 0.84 

compared to 0.83 for LightGBM, Additionally, XGBoost records lower MAE (6.6538) and 

RRMSE (0.1595) than LightGBM, as well as a slightly better MAPE (12.2376) compared to 

LightGBM (12.4313).

In S2, a similar trend is noted. For PM2.5 prediction, LightGBM shows a slight 

improvement in the R² value (0.55) compared to XGBoost (0.54). The MAE and RRMSE 

values are almost identical for both models, with values around 2.1142 and 0.1810 for 

XGBoost, and 2.1367 and 0.1810 for LightGBM, respectively. The MAPE values follow a 

similar trend, at 13.6036 for XGBoost and 13.7412 for LightGBM. For PM10 prediction 

in this scenario, XGBoost has a slightly higher R² (0.69). The MAE, RRMSE, and MAPE 

values are very similar, with slight differences favoring XGBoost in MAE (8.9187) and 

RRMSE (0.2156).

At a macro level, both models demonstrate a marked decrease in predictive perfor-

mance when excluding the PM10 variable for PM25 predictions, and vice versa. This 

suggests that including both variables is crucial for achieving more accurate predictions. 

The residual and scatter plots for each target variable and scenario are presented below.
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Figure 3 

S1 (PM2.5): Scatter and Residual Plots of the XGBoost and LightGBM Models 
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Figure 4 

S1 (PM10): Scatter and Residual Plots of the XGBoost and LightGBM Models 
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Figure 5 

S2 (PM2.5): Scatter and Residual Plots of the XGBoost and LightGBM Models 



Interfases n.o 20, diciembre 2024202

J. A. Oblitas, E. J. Escobedo

Figure 6 

S2 (PM10): Scatter and Residual Plots of the XGBoost and LightGBM Models 

Table 8 

Hypothesis T-Test 

T-Statistic P-Value

S1 PM2,5 -0.1357 0.8921

PM10 1.4859 0.1380

PM2,5 -0.4743 0.6355

S2 PM10 -3.042 0.0025

Table 8 shows the paired t-test results comparing the performance of the XGBoost 

and LightGBM models across both scenarios for PM2.5 and PM10 predictions. In S1, for 

PM2.5 prediction, the t-statistic was -0.1357, with a p-value of 0.8921. Since this p-value 

is significantly higher than the 0.05 significance level, there is no statistically significant 

evidence to reject the null hypothesis, indicating no difference in performance between 

the XGBoost and LightGBM models for PM2.5.

For PM10 prediction in S1, the t-statistic was 1.4859, with a p-value of 0.1380. 

Similarly, this p-value exceeds the 0.05 threshold, suggesting insufficient evidence to 
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conclude that the performance differences between the XGBoost and LightGBM models 

for PM10 are statistically significant. Therefore, the observed differences in performance 

metrics for PM10 in this scenario are also not statistically significant.

In S2, for PM2.5 prediction, the t-statistic was -0.4743, with a p-value of 0.6355. This 

result indicates that, as in S1, the observed differences in performance metrics between 

the two models are not statistically significant for PM2.5 in this scenario.

Finally, for PM10 prediction in S2, the t-statistic was -3.042, with a p-value of 0.0025. 

This result suggests that the observed differences in performance metrics for PM10 in 

this scenario are statistically significant, highlighting a superior performance of one 

model over the other.

6.  DISCUSSION

The results provide a comprehensive assessment of the effectiveness of the XGBoost 

and LightGBM algorithms in predicting PM2.5 and PM10 concentrations in Lima, Peru. 

In S1, both algorithms exhibited similar performance in terms of R². Although XGBoost 

showed a slight improvement in some metrics, such as MAE and RRMSE, especially for 

PM10 prediction, the paired t-test revealed no statistically significant differences.

In contrast, a significant decrease in predictive performance was observed S2. 

This highlights the importance of including both variables to achieve more accurate 

predictions. The strong correlation between PM2,5 and PM10 appears to be critical, and 

excluding one undermines the predictive capability of the models.

These findings underscore the value of using advanced ML models like XGBoost 

and LightGBM in addressing complex air pollution problems. The slight performance 

advantage of XGBoost in certain scenarios could be leveraged to optimize early warning 

systems and mitigation policies.

7.  CONCLUSIONS 

One of the main benefits of this research lies in the ability of predictive models to accura-

tely estimate PM2.5 and PM10 concentrations without the need for specialized equipment 

and machinery for measuring pollutants and climatic conditions. This approach offers 

significant cost savings, as it avoids the need for expensive equipment with limited spatial 

coverage. Prediction techniques enable the integration of multiple datasets, offering a 

broader and more accurate perspective than traditional measurement methods. These 

capabilities support more effective air quality management and better public health policy 

planning.

Despite the promising results, the study has some limitations. The analysis was 

based on data collected from a single monitoring station, which may not fully capture 

the spatial variability of air pollution across Lima. Additionally, important factors such as 
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extreme weather conditions, changes in emission sources, precipitation, solar radiation, 

traffic congestion, and natural events were not considered due to limitation in the available 

datasets.

8. FUTURE RESEARCH

Future research should consider expanding the geographic scope by incorporating 

data from multiple monitoring stations distributed across Lima. This would enable a 

more accurate representation of the spatial variability of air pollution, providing a broa-

der understanding of environmental conditions in different urban and suburban areas. 

Moreover, extending the data collection period to capture seasonal variations and long-

term trends is recommended. Analyzing data over several years could offer deeper 

insights into how factors such as seasonal climate changes and fluctuations in emissions 

affect PM2.5 and PM10 concentrations.

Another promising area for future research is the development of new variants of 

ML algorithms specifically adapted for air pollution prediction. This could involve modi-

fying existing algorithms or creating new hybrid approaches that combine the strengths 

of multiple algorithms. Moreover, it is important to include additional factors that may 

influence air quality, such as extreme weather conditions, changes in emission sources, 

precipitation, solar radiation, traffic congestion, and natural events. Incorporating these 

factors into predictive models could further enhance their accuracy and relevance for air 

quality management decision-making.
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