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ABSTRACT. Denoising diffusion probabilistic models (DDPMs) have demonstrated signi-

ficant potential in addressing complex image processing challenges. This paper explores 

the application of DDPMs in three different areas: reconstruction of remote sensing 

imagery affected by cloud cover, reconstruction of facial images with occluded areas, 

and segmentation of bodies of water from remote sensing imagery. Inpainting invol-

ves filling in missing regions in images, while DDPMs act as data generators capable 

of synthesizing information that alings coherently with the context of the original data. 

Inspired by the inpainting technique, the RePaint approach was adapted and applied to 
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reconstruction tasks. The WaterSegDiff approach, which uses a diffusion model as a 

backbone, was employed for the segmentation task. To illustrate the model’s behavior 

and provide examples of the tasks, experiments were carried out with both qualitative 

and quantitative evaluations. The qualitative results show the model’s ability to generate 

data for reconstruction and segmentation. Quantitatively, metrics such as MSE, PSNR, 

SSIM, IoU, PA and F1 score highlight the model’s proficient performance in image proces-

sing tasks. In this scenario, DDPMs have proved to be a promising tool for high-quality 

data reconstruction, enabling the hallucination of image regions with high visual cohe-

rence and facilitating applications in various areas, such as environmental monitoring, 

facial recognition, water resource mapping, among others.

KEYWORDS: machine learning / reconstruction / segmentation / face and gesture 
recognition / remote sensing.

IA GENERATIVA PROFUNDA BASADA EN MODELOS DE DIFUSIÓN DE DESENFOQUE 
PROBABILÍSTICO PARA APLICACIONES EN PROCESAMIENTO DE IMÁGENES

RESUMEN. Los denoising diffusion probabilistic models (DDPMs) han mostrado un 

potencial significativo en la resolución de problemas complejos de procesamiento 

de imágenes. Este estudio explora el uso de DDPMs en tres aplicaciones diferentes, 

incluyendo la reconstrucción de imágenes de teledetección en zonas con nubosidad, 

la reconstrucción de imágenes faciales con regiones ocluidas y la segmentación 

de masas de agua a partir de imágenes de teledetección. El inpainting consiste en 

rellenar las regiones omitidas en las imágenes, mientras que los DDPM actúan como 

generadores de datos capaces de sintetizar información coherente con el contexto 

de los datos originales. En este contexto, tomando la técnica de inpainting como 

inspiración, se adaptó el enfoque RePaint y se aplicó a tareas de reconstrucción. Para 

la tarea de segmentación se utilizó la técnica WaterSegDiff, que también utiliza un 

modelo de difusión como backbonner. Para ilustrar el comportamiento del modelo 

y ejemplificar las tareas, se realizaron experimentos cuya performance se evaluó 

cualitativa y cuantitativamente. Los resultados de las evaluaciones cualitativas 

muestran la capacidad del modelo para generar datos para la reconstrucción y la 

segmentación. Cuantitativamente, las métricas MSE, PSNR, SSIM, IoU, PA y F1-Score 

indican un hábil desempeño de los modelos en tareas de procesamiento de imágenes. 

En este escenario, los DDPMs han demostrado ser una herramienta prometedora para 

la reconstrucción de datos de alta calidad, permitiendo la alucinación de regiones 

de imágenes con alta coherencia visual y aplicaciones en diversas áreas, tales como 

monitoreo ambiental, reconocimiento facial, mapeo de recursos hídricos, entre otros.

PALABRAS CLAVE: aprendizaje automático / reconstrucción / segmentación / 
reconocimiento facial y gestual / teledetección.
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1. INTRODUCTION

In recent years, advancements in deep learning techniques, especially convolutional 

neural networks (CNNs), have boosted the emergence of artificial intelligence generated 

content (AIGC). This term refers to data generated by deep learning algorithms, which are 

capable of creating high-quality content in a variety of formats, such as texts, images and 

videos. The ability of AIGCs to create content that is nearly indistinguishable from human-

made material has revolutionized various sectors, including entertainment, education 

and scientific research, opening up new possibilities for the content creation and infor-

mation consumption (Wu et al., 2023; Cao et al., 2023).

According to Zhang et al. (2023), the core of content generation algorithms, also 

known as generative models, lies in their ability to learn the patterns within a dataset 

and, based on this knowledge, generate new similar content. Image synthesis is a key 

area where these models are used to create visually coherent images. Tasks such as 

super-resolution imaging (enhancing image resolution), image generation from textual 

descriptions (Text-to-Image) and image reconstruction (Image-to-Image) are examples 

of diffusion models applications, as illustrated in Figure 1.

Figure 1 

Diffusion Model Applications: (a) Image Synthesis for Super-Resolution, (b) Text-to-Image, and (c) 
Image to Image

(a) (b) (c)

Image-to-ImageText-to-ImageSuper-Resolution

“A rose against the

background of a grass

park with people”

Within the field of generative models, diffusion models have proven capable of 

reversing degradation processes, by learning to recover lost information and generate 

realistic data (Rombach et al., 2022). These models, also known as denoising diffusion 
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probabilistic models (DDPMs), often simply referred to as diffusion models for brevity 

(Ho et al., 2020). DDPMs have demonstrated great potential across various image resto-

ration tasks, including applications in computer vision, robust machine learning, natural 

language processing, temporal data modeling, multimodal modeling, medical image 

reconstruction. They have also found interdisciplinary applications in areas such as 

computational chemistry, image inpainting, image noise removal (denoising), remote 

sensing, face restoration with occluded areas—particularly in security applications—and 

image segmentation (Yang et al., 2023).

In remote sensing applications, Singh and Vyas (2022) emphasize the high homoge-

neity and geospatial accuracy of the data obtained by remote sensing, while underscoring 

the potential for occlusions in adverse conditions. These occlusions, often associated 

with cloud cover, can impair the quality of vegetation indices, which are mathematical 

models used to quantify characteristics of the Earth’s surface. One notable example is 

land surface temperature (LST), an indicator sensitive to changes in resource and envi-

ronmental conditions, especially in areas with high spatio-temporal variability. According 

to Awais et al. (2022), LST is influenced by multiple factors, such as human activities as 

well as vegetation and soil water conditions. García and Díaz (2021) further corroborate 

the importance of LST across various areas of knowledge, including hydrology, meteo-

rology, surface energy balance and climate studies. Growing concern about the effects 

of climate change has led to the identification of certain ecosystems as key indicators 

of environmental impact. Lakes, for instance, are often sensitive and rapid sentinels of 

climate and hydrological changes in river basins, providing valuable tools for under-

standing environmental dynamics (Adrian et al. 2009). For example, Perez-Torres et al. 

(2024) developed automated and efficient methods to accurately capture lakes in high 

mountain environments, aiming to climate change challenges in these ecosystems, 

prevent and mitigate disasters and properly manage and protect water resources.

Simultaneously, the prevalence of images in modern society makes image resto-

ration a critical research area in computer vision. The presence of artifacts, noise, or 

missing regions in images can compromise the quality of visual information and human 

interpretation. Inpainting, an image processing technique, aims to fill in these gaps coher-

ently with the visual context, significantly improving the perceptual quality of images 

(Elharrouss et al., 2020; Li et al., 2023). Facial recognition, an intuitive task for humans, 

poses complex challenges for computational systems. Changes in capture conditions, 

such as lighting and angle, as well as individual variations, significantly impact the accu-

racy of algorithms (Kortli et al., 2020). The primary objective of facial recognition systems 

is to identify individuals from static images or video sequences (Ali et al. 2021; Taskiran 

et al., 2020). To deal with degraded images or occluded images, inpainting—especially 

when based on diffusion models—is emerging as a promising technique. This approach 

shows potential for improving the robustness of facial recognition systems, especially in 

challenging conditions.
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Based on the works by Leher (2024), Alves (2024) and Perez-Torres et al. (2024), this 

paper presents the versatility of DDPMs. Expanding on the research by Lugmayr et al. 

(2022), it refines using DDPMs to recover lost information more precisely across various 

image modalities. Furthermore, integrating a segmentation model with DDPMs facili-

tates the extraction of bodies of water, this approach in multiple applications, opening up 

new possibilities for visual data analysis and interpretation.

2. RELATED STUDIES  

Sohl-Dickstein et al. (2015) pioneered the application of diffusion models, introdu-

cing a new method for modelling complex data. They proposed a technique involving 

the gradual destruction of the data structure, followed by learning an inverse process 

for its reconstruction. This method resulted in a deep and versatile generative model 

that enabled rapid learning, efficient sampling and precise calculation of probabilities. 

Inspired by statistical physics, the approach offers a solution to the challenge of balan-

cing flexibility and tractability in data modelling.

Various studies have since focused on diffusion model-based for image reconstruc-

tion. Avrahami and Fried (2022), in the work Blended Diffusion for Text-driven Editing of 

Natural Images, presented an inpainting solution to perform local (region-based) editing 

on generic natural images based on a natural language description together with a 

region of interest (ROI) mask. They combined a contrastive language-image pretrained 

(CLIP) model to direct editing to a user-supplied text prompt with a DDPM to generate 

natural-looking results.

Similarly, Lugmayr et al. (2022), in RePaint: Inpainting using Denoising Diffusion 

Probabilistic Models, proposed an inpainting approach based on a DDPM-type diffusion 

model, achieving high-quality results even with atypical masks. They used an uncondi-

tional DDPM pre-trained with generative priors, altering the reverse diffusion iterations 

by sampling the unmasked regions using the provided image information. As this tech-

nique does not modify or condition the original DDPM network itself, the model produces 

diverse, high-quality output images for any form of inpainting/filling.

Kawar et al. (2022) introduced denoising diffusion restoration models (DDRMs), a 

diffusion model based on an unsupervised posterior sampling method, achieving effi-

cient results in the fields of image restoration, super-resolution, deblurring, colorization 

and inpainting. DDRM proved to be an excellent solver of linear inverse problems through 

general sampling with an unconditional diffusion model.

 Approaches based on diffusion models have proven effective in generating new 

data, which has motivated recent research into their application in remote sensing 

imagery. Liu et al. (2022) and Bandara et al. (2022) explored these models in different 

contexts. Liu et al.  (2022) proposed the diffusion model with detail complement (DMDC), 
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a generative model specifically for super-resolution images. Rather than just optimizing 

existing images, DMDC generates high-resolution images from low-resolution inputs, 

allowing for a deeper understanding of the image and the recovery of fine and complex 

details that could be lost at lower resolutions. On the other hand, Bandara et al. (2022) 

applied DDPMs for feature extraction, to improve the accuracy of change detection in 

remote sensing images. The model, trained on a large set of unlabeled images, learned to 

generate images from noise. After training, DDPMs are able to extract relevant features 

such as texture, shape, and patterns, which were used to train a simple classifier that 

identifies changes in specific image areas.

In their study on cloud removal from satellite images, Jing et al. (2023) introduced 

the DDPM-CR model, which is notable for its ability to remove both thin and thick clouds 

from radar data. This model, based on the DDPM architecture, uses the SEN12MS-CR 

database to improve its results. DDPM-CR integrates cloud-contaminated optical images 

with synthetic aperture radar (SAR) images, where the information provided by the SAR 

images helps to accurately reconstruct the areas obscured by the clouds. The model 

incorporates a multi-scale attention mechanism for effective cloud identification and 

removal. In addition, the loss function developed for training the model is specifically 

designed for cloud removal, considering both high- and low-frequency information.

In parallel, Zhao and Ji (2023) proposed the sequential-based diffusion models 

(SeqDMs), which combine data from different sources, such as radar images (unaf-

fected by clouds) and optical images (interfered by clouds). SeqDMs analyze temporal 

sequences of images to generate more precise information about cloud-covered areas. 

The model is adaptable to sequences of different lengths, which enhances its applica-

bility across different situations.

Inspired by recent advancements in natural language processing, computer vision, 

and image synthesis from Gaussian noise, diffusion probabilistic models and trans-

former models have demonstrated a remarkable ability to capture complex spatial and 

contextual relationships, generating high-quality images. This makes them particularly 

suitable for image segmentation tasks. While traditionally used for image generation and 

inpainting, diffusion models have recently been applied to semantic segmentation. Amit 

et al. (2021) introduced an innovative technique that integrates the power of diffusion 

models, known for their ability to generate high-quality images, with image segmenta-

tion task. Unlike approaches that rely on pre-trained models in other tasks (backbones), 

their model is trained in an integrated way, combining the information from the original 

image with the current segmentation estimate by means of two encoders. Through addi-

tional coding layers and a decoder, the model iteratively refines the segmentation, using 

the probabilistic mechanism characteristic of diffusion models.

Semantic segmentation models, which divide images into different semantic 

regions, have difficulty identifying the exact boundaries between these regions. This 
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challenge arises because convolutional operators, common tools in these models, tend 

to smooth out fine details, making it difficult to clearly distinguish the boundaries. Tan et 

al. (2022) proposed a new technique called semantic diffusion network (SDN) to improve 

the ability of segmentation models to detect boundaries. SDN works as an anisotropic 

diffusion process that emphasizes edge and texture information relevant to semantic 

boundaries. SDN creates a mathematical mapping that transforms the original features 

into boundary-sensitive features.

Ayala et al. (2023) proposed a solution for semantic segmentation in remote sensing 

imagery conditioning the diffusion process to reduce noise in input images. This method 

aims to guide the generation of the segmentation mask, ensuring consistency with the 

elements present in the original image. By conditioning the diffusion process, the authors 

significantly improved the mask’s accuracy, so that it adequately reflects the elements 

of the captured scene. The model was evaluated on a specific aerial images dataset and 

compared to state-of-the-art techniques. The results demonstrate the promising poten-

tial of this approach as a valuable tool in the field of remote sensing.

3. METHODOLOGY

3.1 DDPM

As outlined by Dhariwal and Nichol (2021), the diffusion process consists of two primary 

stages: forward diffusion and reverse diffusion.

3.2.1 Forward diffusion

In this stage, a Markov chain is used to progressively add small amounts of noise ε to a 

data sample 0 , producing a sequence of increasingly noisy samples 0, 1, . . . , . 
The amount of noise at each step  is controlled by the variance {   (0,1)}  = 1} , as 

seen in Equation 1.

( | 1)  =  ℵ( 1 1, (1)

As  increases, the original data sample 0  loses its distinctive characteristics and 

eventually becomes an isotropic Gaussian distribution .

3.2.1 Reverse diffusion

In the reverse diffusion stage, the process uses a neural network with parameters deno-

ted as θ to iteratively remove noise from the noisy sample  at each time step until a 

high-quality sample 0  is obtained. A neural network predicts the mean ( , )  and 

variance ( , )  of the Gaussian distribution, calculated with Equation 2:
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(2)( −1| )  =  ℵ( −1; ( , ), ( , ))

The learning objective of the model is derived by considering the variational lower 

bound (VLB) between the prior and posterior distributions, as seen in Equation 3:

 ( 0| ) 

= ( | 0)|| ( ) +  −1| , 0)|| ( −1|  −∑ >1

 ( 0| ) 

= ( | 0)|| ( ) +  −1| , 0)|| ( −1|  −∑ >1

(3)

After a series of derivations of the terms −1, , one simplified training objective 

  is obtained, according to Equation 4:

 =  ~[ 1,  ], 0, [ || − ( , )||2 ]                   

( , ),

(4)

Since  does not depend on the variance 

 =  ~[ 1,  ], 0, [ || − ( , )||2 ]                   

( , ),  a new hybrid object is defined 

according to Equation 5:

ℎ  = + (5)

3.2 Image Reconstruction

After the consolidation of diffusion models (DMs), the inpainting task has been signifi-

cantly optimized. Studies by Sohl-Dickstein et al. (2015) and Ho et al. (2020) demonstrated 

the potential of diffusion models. Since then, several authors, including Lugmayr et al. 

(2022), have introduced new frontiers in computational inpainting using diffusion models, 

achieving outstanding results.

Lugmayr et al. (2022) propose a robust free-form inpainting method called 

RePaint, which fills arbitrary regions of an image defined by a mask. The method uses 

a pre-trained DDPM-type (Ho et al., 2020), conditioning the generation process only in 

the reverse diffusion iterations by sampling the unmasked regions. Figure 2 illustrates 

RePaint’s iterative process. The methodology proposes a reformulation of the traditional 

denoising process, aimed at conditioning the content of the input image. In each iteration, 

samples from the known region of the original image (upper sequence in Figure 2) and 

the already filled portion of the output generated by the DDPM (lower sequence in Figure 

2) are used as input for the model. Preserving the DDPM’s original architecture guaran-

tees the diversity and high quality of the generated images, regardless of the shape of the 

inpainting mask. This feature gives the technique greater flexibility, allowing arbitrary 

masks to be applied and inpainting to be carried out more freely.
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Figure 2 

RePaint Process that Exemplifying the Reconstruction of an LST Image 

next iteration

Note. From “RePaint: Inpainting using denoising diffusion probabilistics models” by A. Lugmayr, M. Danelljan, 
A. Romero, F. Yu, R. Timofte, & L. Van Gool, 2022, 2022 IEEE/CVF Conference on Computer Vision and Pattern 
Recognition (CVPR), pp. 11461-11471 (https://openaccess.thecvf.com/content/CVPR2022/papers/Lugmayr_
RePaint_Inpainting_Using_Denoising_Diffusion_Probabilistic_Models_CVPR_2022_paper.pdf).

Considering Figure 2, the original image (ground truth) is designated by x, the 

unknown pixels by m ⊙ x and the known pixels by (1 – m) ⊙ x, where m represents 

the original mask region and (1 – m) represents the inverse mask region. Therefore, the 

known regions  (unmasked pixels) are represented by the values 1 in the binary 

mask matrix , indicating an unmasked pixel, while the value 0 indicates a pixel covered by 

the mask. Thus,  is sampled from the input data by Equation 6:

(6)~Ɲ( (1 − ) )                                   

In this way, the unknown regions  (covered by the mask) by sampling from 

the neural model, shown in Equation 7:

(7)~Ɲ( ( , ), ( , ))            

Finally, these samples are combined to obtain the next reverse intermediate step 

1 , as shown in Equation 8:

(8) + (1 )          

In this way, reconstruction of the occluded areas after applying the mask is carried 

out using the inpainting technique, generating a reconstructed image in the output. By 



Interfases n.o 20, diciembre 202478

E. Silva, Q. Oliveira, U. da Silva, T. Paixão, A. Alvarez

definition, the area to be reconstructed is delimited by a binary mask m, which is filled 

in based on information from the surrounding pixels according to the pre-trained DDPM.

3.3 Image Segmentation

Diffusion probabilistic models with noise reduction have shown remarkable results in 

generative image modeling. Studies by Amit et al. (2021), Tan et al. (2022), and Ayala et al. 

(2023) highlight the potential of these models in semantic segmentation tasks, particu-

larly in remote sensing. However, the main challenge in applying them arises from their 

generative nature, which creates a segmentation mask from random noise. To ensure 

that this mask corresponds to the target image, a restricted diffusion process is needed 

to guide the generation of the mask in a more accurate and coherent way.

MedSegDiff-V2 (Wu et al., 2023) is a transformer-based diffusion framework that 

uses two different conditioning techniques—anchor condition and semantic—condi-

tion which effectively integrate the conditioning resources into the diffusion model. 

This framework employs two U-Net architectures: one for the diffusion block and one 

another for the conditioning block. The condition U-Net block acts as a segmentation 

feature extractor from the original raw image, learning the most relevant features. These 

segmentation features are integrated with the noise mask information using the anchor 

condition technique, which implements the uncertain spatial attention (U-SA) mecha-

nism. The integrated data is fed into the U-Net diffusion model’s encoder. On the other 

hand, the semantic condition integrates the high-level features obtained by the diffusion 

and conditioning models through a transformation mechanism called spectrum-space 

transformer (SS-Former). This cross-attention mechanism operates in the frequency 

domain, aligning the noisy image data with the segmentation features of the raw image. 

Both conditioning mechanisms address the incompatibility issue of combining a U-Net 

model with diffusion probabilistic models, by implementing an interface between the 

two models, which helps to reduce the large variations in the transformer configura-

tion. Based on MedSegDiff, a new architecture called WaterSegDiff has been developed 

specifically for the task of segmenting bodies of water from remote sensing imagery. 

Figure 3 illustrates the WaterSegDiff architecture.



Interfases n.o 20, diciembre 2024 79

Deep Generative AI Based on Denoising Diffusion Probabilistic Models

Figure 3 

WaterSegDiff Architecture Showing the Two Conditioning Mechanisms: U-SA and SS-Former

Note. From “Exploratory analysis using deep learning for water-body segmentation of Peru’s high-mountain 
remote sensing images,” W. I. Perez-Torres, D. A. Uman-Flores, A. B. Quispe-Quispe, F. Palomino-Quispe, E. 
Bezerra, Q. Leher, T. Paixão, and A. B. Alvarez, 2024, Sensors, 24(16), Article 5177 (https://doi.org/10.3390/
s24165177).  

At each stage t of the diffusion process, a noisy mask xt is introduced into the diffu-

sion model. This model is conditioned by segmentation features extracted from the raw 

image using the conditioning model. The diffusion process is instructed using the Anchor 

Condition and Semantic Condition techniques, where the former allows the diffusion 

model to be initialised with an approximate but static reference, which helps to reduce 

variations in diffusion. While the second technique, using the SS-Former, connects the 

noise and high-level segmentation information to be fed into the diffusion model decoder, 

generating a more robust representation by taking advantage of the global and dynamic 

nature of the Transformer proposed by Muzammal et al. (2021). This conditioning intro-

duced into the diffusion model decoder can be expressed as in Equation 9.

( , , ) = ( ( , ), ) (9)

Where  represents the high-level features of the raw image and  represents the 

high-level features of the image with current noise. Using a transformer, both features 

are incorporated and passed through the D decoder of the diffusion model.
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4. EXPERIMENTS

The experiments were carried out at the Federal University of Acre (UFAC) Pesquisa 

Aplicada em Visão e Inteligência Computacional (PAVIC) laboratory in Brazil, encompas-

sing three independent experiments. All experiments were conducted using PyTorch 

2.0.1 on Ubuntu 22.04.3 LTS. Section 4.1 presents a methodology for reconstructing 

remote sensing imagery in order to estimate Earth’s surface temperature. Section 4.2 

describes image reconstruction techniques for facial recognition applications, security 

systems and facial biometrics. Finally, Section 4.3 includes a study on the segmentation 

of bodies of water in satellite images for remote sensing.

4.1 First Experiment: LST Image Reconstruction

The reconstruction of satellite images is a complex problem that requires high compu-

tational power and faces challenges such as noise and cloud cover. To mitigate these 

effects, image preprocessing techniques inspired by Bezerra et al. (2023) were used as 

a first step in applying the RePaint model.

The experiment conducted by Leher (2024) explores the applicability of an 

inpainting approach based on DDPMs (Ho et al., 2020) to reconstruct satellite information 

(Landsat-8) for the calculation of LST in areas affected by cloud cover. This experiment 

follows the methodology of the surface energy balance algorithm for land (SEBAL) model 

(Bastiaanssen et al., 1998) to estimate LST. In this process, emissivity is derived from 

vegetation indices calculated using the reflectance values extracted from the bands B4 

and B5. At the same time, spectral radiance is obtained from the band B10. Finally, the 

information gathered from the emissivity and spectral radiance is used to reconstruct the 

LST in each image fragment. Thus, the LST is estimated using the following procedures:

• Spectral radiance: Converts digital numbers (DN) from the thermal band (B10) 

into spectral radiance using band-specific calibration factors.

• Top-of-atmosphere reflectance: Calculates reflectance for bands B4 and B5 

using solar elevation, sun-earth distance and band-specific calibration factors.

• Vegetation indices: Derive the normalized difference vegetation index (NDVI) 

and the soil adjusted vegetation index (SAVI) from reflectance values. The leaf 

area index (LAI) is calculated from the SAVI and represents the ratio of the leaf 

area of a vegetation and the area of the unit covered by that vegetation. These 

indices represent the health and biomass of the vegetation.

• Emissivity: Estimates pixel emissivity using a linear relationship with the SAVI, 

characterizing the heat radiation properties of a surface.

The study region selected for this research is the western Brazilian Amazon rain-

forest, known for its high annual cloud cover. Figure 4 shows the visual results of the 
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model reconstructing at three levels of cloud cover: 15%, 22% and 50% missing rate data 

(MRD). 

The complexity of generative models such as RePaint results in significant compu-

tational cost. In this study, training on a set of satellite images required 48 hours of 

processing on dedicated hardware. Training and testing were performed using  a 3.0 

GHz Intel Xeon Gold 6342 CPU and an NVIDIA HGX A100 GPU. The inference phase - 

the process of generating new images from the trained model - took an average of 15 

minutes per image.

Figure 4 

Visual Results of the LST Retrieval: (a) Ground Truth LST, (b) Masked LST, (c) Reconstructed LST, (d) 
Absolute Error  
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As shown in Figure 4, the model exhibited strong ability in reconstructing LST 

images with high fidelity, even under significant cloud cover. The reconstruction with 

15% cloud cover achieved the highest quality, with minimal absolute errors compared 

to the reference LST image. This high quality is evident by both the visual analysis and 

error quantification, which did not exceed 4°C. Reconstructions for images with 22% and 

50% cloud cover also yielded satisfactory results, with maximum errors of 7°C and 6°C 

respectively. The visual comparison of the reconstructed images against the reference 

images, as well as absolute error quantification, enabled a robust assessment of the 

model’s performance across cloud cover scenarios.
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In addition to the visual analysis of the reconstruction, a quantitative evaluation was 

carried out using metrics such as mean square error (MSE), for fidelity to the original 

image, peak signal-to-noise ratio (PSNR) and structural similarity index measure (SSIM). 

The numerical results of these metrics are shown in Table 1.

Table 1

MSE, PSNR, and SSIM Quantitative Statistics Values from LST Image Reconstruction

Scenarios MSE ↓ PSNR ↑ SSIM ↑

15 % 0,0019 47,1894 0,9874

22 % 0,0001 39,9359 0,9763

50 % 0,0002 35,9113 0,9478

Note. ↓ indicates that a lower value is better, while ↑ indicates that a higher value is 
better.

As expected, the results in Table 1 reveal that cloud cover directly affects the quality 

of the model’s reconstruction. The scenario with 15% cloud cover showed the best 

results, with the highest PSNR (47,1894) and SSIM (0,9874) metrics, indicating a recon-

struction that was more faithful to the original image. The 22% cloud cover scenario, 

despite achieving the lowest MSE (0,0001), obtained slightly lower results in the other 

metrics. The 50% coverage scenario yielded the lowest PSNR and SSIM values among 

the three scenarios. However, even at this level of cloud cover, the metric values indicate 

good reconstruction quality, suggesting the robustness of the model across different 

cloud cover conditions.

4.2 Second Experiment: Reconstruction of Facial Images 

The RePaint model was applied to a set of facial images from the CelebA-HQ dataset, 

following the pre-processing technique proposed by Alves (2024). This stage, which 

involves extracting the facial region of interest (ROI), aims at guiding the model’s lear-

ning toward facial patterns, thereby improving its reconstruction ability. This research 

uses RePaint with transfer learning, and this pre-processing stage has proven crucial 

for increasing the robustness of facial recognition systems in scenarios with partial 

occlusion. 

This experiment introduces a dynamic approach using the inpainting technique 

based on diffusion models to reconstruct occluded areas of facial images. From a single 

sample, the model realistically synthesizes several missing parts, enabling the extraction 

of facial features critical for identification. Figure 5 displays the reconstruction results 

for two randomly chosen samples.
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The computational cost of generative models such as RePaint pose a significant 

challenge, particularly in large-scale projects. In this experiment, training on facial 

images required 120 hours of processing time (Lugmayr et al., 2022), while generating 

each reconstructed image took approximately 14 minutes and 30 seconds. These find-

ings underscore the necessity for optimizations and the development of more efficient 

computational infrastructures to facilitate the large-scale implementation of these 

models.

The qualitative evaluation of facial reconstruction results, shown in Figure 5, indi-

cates that the model effectively recovers lost facial information in low and moderate 

occlusion scenarios (15% and 20%). Sample 1 (male face) achieved the best reconstruc-

tion for 15% occlusion, while sample 2 (female face) visually produced the best results 

for 20% occlusion. However, the model’s performance degrades notably under condi-

tions of high occlusion (50%), highlighting the need for further research to improve the 

model’s robustness in scenarios with more extensive information loss. 

Table 2 presents the quantitative statistics for MSE, PSNR and SSIM metrics. The 

analysis of sample 1 reveals an inverse correlation between the level of occlusion and 

the quality of the reconstruction. The 15 % occlusion scenario showed the highest MSE, 

indicating greater fidelity to the original image. This observation is corroborated by the 

PSNR and SSIM values, which also achieved the best results in the same scenario. The 

expected gradual decrease in these metrics with increasing reflects the added challenge 

larger occluded areas pose to the reconstruction process. However, the results demon-

strate the model’s robustness to generate high-quality reconstructions, even under 

challenging conditions.

Figure 5 

Reconstruction of Two Samples Under 15%, 20% and 50% MRD Occlusion Scenarios. (a) Sample 1, 
(b) Sample 2 
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Table 2

MSE, PSNR, and SSIM Quantitative Statistics from Sample 1

Scenarios MSE ↓ PSNR ↑ SSIM ↑

15 % 0,0044 29,5741 0,9295

20 % 0,0412 29,8718 0,9126

50 % 0,0214 22,7156 0,7773

Note. ↓ indicates that a lower value is better, while ↑ indicates that a higher value is better.

The quantitative statistics of sample 2, presented in Table 3 and using the MSE, 

PSNR, and SSIM metrics, reveals a different behavior compared to sample 1. The 20% 

occlusion scenarios showed the lowest MSE, indicating greater fidelity to the original 

image. This observation is corroborated by the PSNR values which also achieved the best 

results in the same scenario. However, SSIM reached its peak at 15% occlusion. Similarly 

to sample 1, the results for sample 2 highlights the model’s robustness to generate high-

quality reconstructions, even under challenging occlusion conditions.

Table 3

MSE, PSNR, and SSIM Quantitative Statistics from Sample 2

Scenarios MSE ↓ PSNR ↑ SSIM ↑

15 % 0,0017 33,6736 0,9379

20 % 0,0014 34,6582 0,9291

50 % 0,0123 25,1303 0,8106

Note. ↓ indicates that a lower value is better, while ↑ indicates that a higher value is better.

4.3 Third Experiment: Segmentation of Bodies Water 

The accurate segmentation of lakes in high-resolution images, especially in complex 

mountainous regions such as the Peruvian Andes, presents significant challenges for 

environmental monitoring and water resource management. The experiment conducted 

by Perez-Torres et al. (2024) proposes an innovative approach called WaterSegDiff, which 

is based on diffusion probabilistic models and transformers. WaterSegDiff incorporates 

semantic anchoring and conditioning mechanisms to capture the distinctive characteris-

tics of lakes across different environmental contexts. Applied to high-resolution images of 

the Peruvian Andes, WaterSegDiff generates accurate and up-to-date lake maps, essen-

tial for monitoring the dynamics of these ecosystems that are sensitive to climate change 

and land use. The high temporal and spatial frequency of remote sensing data makes it 

possible to detect changes in the lake area and morphology, providing crucial information 

for integrated water resources management and Andean biodiversity conservation.  



Interfases n.o 20, diciembre 2024 85

Deep Generative AI Based on Denoising Diffusion Probabilistic Models

Figure 6 shows three examples of lake segmentation using WaterSegDiff, illus-

trating different areas covered by bodies of water. The qualitative results demonstrate the 

model’s ability to approximate ground truth, indicating high performance in segmenting 

bodies of water, even in complex scenarios. Although small discrepancies were observed 

between the ground truth and predict masks, the model exhibits accurate and robust 

segmentation, underscoring its potential for applications in hydrological studies and 

water resource management.

The computational cost of training and running inference on generative models, 

such as Repaint, while generating a single image after training required around 15 

minutes for segmentation processing. Training and testing were performed using a 3.0 

GHz Intel Xeon Gold 6342 CPU and an NVIDIA HGX A100 GPU.

To quantify the segmentation ability, the model was subjected to a quantitative eval-

uation using the intersection over union (IoU), pixel accuracy (PA) and F1 score metrics, 

as shown in Table 4. Analysis of Table 4 reveals that scenario 2 has the highest IoU value, 

indicating a better overlap between the segmented regions and reference regions. On 

the other hand, scenario 1 obtained the best PA and F1 score values, demonstrating high 

pixel classification accuracy and a good balance between accuracy and suppression. 

With all metrics exceeding 0,95, these results suggest that the model exhibits strong 

generalization power for segmentation tasks, even under challenging scenarios.

Figure 6 

Segmentation Using WaterSegDiff: (a) showing the RGB Image, (b) Ground Truth Mask,  and (c) 
Predicted Mask

RGB Image Ground Truth Mask Predicted Mask

(a) (b) (c)
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Table 4

Metrics and Standard Parameters for Quantitative Statistics from the WaterSegDiff Model

Scenarios IoU ↑ PA ↑ F1 Score ↑

1 0,9561 0,9984 0,9776

2 0,9677 0,9900 0,9836

3 0,9502 0,9971 0,9745

Note. ↓ indicates that a lower value is better, while ↑ indicates that a higher value is better.

5. DISCUSSION

The analysis of Figure 4 and Table 1 - i. e., the results of the first experiment - reveals 

that cloud cover has a significant impact on the quality of LST image reconstruction in 

Western Amazonia. As cloud cover increases, the MSE, PSNR and SSIM quantitative 

metrics indicate a progressive deterioration in reconstruction quality, corroborating the 

findings from the visual analysis. However, the model shows robustness across different 

cloud cover conditions, yielding promising results even under high cloudiness. The 15% 

cloud cover scenario achieved excellent results, with the highest PSNR and SSIM values 

indicating a reconstruction that was both accurate and closely aligned to the original 

image. As cloud cover increased to 22% and 50%, a gradual degradation in reconstruc-

tion quality was observed, although metric values remained satisfactory, especially 

considering the complexity of the task. These results suggest that cloud cover is the main 

factor affecting LST image reconstruction quality in the study region. While other factors 

- such as cloud type, spatial and temporal resolution, and atmospheric conditions - may 

contribute to variability in results, cloud cover’s influence stands out.

Regarding the second experiment, the qualitative results shown in Figure 5 indicate 

that robust model performs well in reconstructing facial images with low and moderate 

occlusion levels, though performance degrades significantly under conditions of high 

occlusion. Quantitative metrics from Tables 2 and 3, corroborate these observations, 

with MSE, PSNR, and SSIM metrics showing an inverse correlation between the occlu-

sion level and the reconstruction  quality. This suggests that the model performs better 

in scenarios under a lower level of occlusion. The experiment demonstrates the effec-

tiveness of the inpainting technique based on diffusion models for the reconstruction 

of partially occluded facial images, highlighting its potential  for applications in facial 

recognition systems.  

Finally, in the third experiment, the results obtained with the WaterSegDiff model 

demonstrate high accuracy in segmenting lakes, even in complex scenarios. The compar-

ison between model-generated masks with reference masks ground truth indicates 
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excellent agreement, with only minor discrepancies in some cases, as shown in Figure 6. 

The IoU, PA, and F1 score metrics in Table 4 further quantify the model’s performance, 

with all exceeding 0,95 across all scenarios, which suggests a strong generalization 

power for segmentation tasks. The application of the WaterSegDiff to high-resolution 

images of the Peruvian Andes enables the generation of accurate and up-to-date lake 

maps, essential for monitoring the dynamics of these ecosystems that are sensitive to 

climate change and land use. 

While the results demonstrate considerable potential, the computational cost is 

significantly higher than that of state-of-the-art models in the literature. Notably, the 

facial reconstruction model required the most extended training time compared to the 

other two experiments, highlighting the need for optimization processes to make these 

models more practical for real-time scenarios.

6. CONCLUSIONS

Diffusion probabilistic models have demonstrated significant potential across various 

image processing tasks, especially for reconstructing occluded or damaged areas and 

sementing image. This study explored the application of DDPMs in three specific areas: 

reconstruction of remote sensing imagery for estimating LST in areas with cloud cover, 

segmentation of bodies of water in satellite images for delimiting areas covered by lakes 

and reconstruction of facial images with occluded areas, to improving facial recogni-

tion systems. Reconstruction was achieved through inpainting where DDPMs enabled 

the recovery of lost information for more precise and complete analyses. The study also 

presents two applications of RePaint for reconstruction tasks and WaterSegdiff, which 

uses a DDPM backbone, transformers, semantic anchoring and conditioning mecha-

nisms, for segmentation.

A notable advantage of diffusion-based approaches, as observed in the experi-

ments, is that these methods require only a single sample to perform reconstruction 

and/or segmentation, unlike other approaches that need multiple images to complement 

the task.

In the first experiment, cloud cover emerged as the main factor affecting LST image 

reconstruction quality in Western Amazonia. Although the model exhibited spatial discon-

tinuities relative visual structures in some areas high cloudiness did not compromise 

reconstruction accuracy, indicating optimal performance. In the second experiment, the 

model proved robustness in reconstructing facial images with low and moderate occlu-

sion, though performance degraded under high occlusion. Finally, in the third experiment, 

WaterSegDiff showed high performance in segmenting lakes, even in complex scenarios, 

achieving quantitative statistics exceeding 0,95 across all scenarios. Thus, despite 

challenges from atmospheric conditions, occlusion level, and scene complexity, these 
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findings demonstrate the strong performance of diffusion models in handling complex 

tasks such as image reconstruction and segmentation.

Generative diffusion models thus offer an innovative approach with significant 

potential for intelligent digital image processing applications, including environmental 

monitoring, facial recognition, and water resource mapping, emphasizing the versatility 

of diffusion model’s.

Although the outcomes are promising, the models utilized in this research present 

a key limitation: high computational cost. Pursuing optimization strategies is essential 

to reduce computational time and enhance the efficiency of these models for practical 

applications. Future research should focus on strengthening the model’s resilience 

in challenging scenarios, particularly by improving their ability to cope with elevated 

occlusion rates, which are typical of dynamic and complex environments. Furthermore, 

accurately segmenting more complex environmental elements, such as transparent 

objects or those with a similar texture to the background, remains a significant challenge 

to be addressed. These considerations reveal a significant scope for further research 

and development, as the field faces numerous challenging and complex issues that 

require in-depth research. 

The exploration of new applications for this promising technology offers a rich 

field for future research. The authors are particularly interested in utilizing generative 

diffusion models for tasks such as high dynamic range (HDR) image enhancement and 

generative data augmentation, aimed at improving computer vision capabilities across 

various domains. Additionally, advancements of quantization, pruning and knowledge 

distillation techniques hold great promise for reducing model size and accelerating infer-

ence, thereby enhancing their suitability for resource-limited devices.
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