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ABSTRACT. The imminent arrival of quantum computing has accelerated the need for 

cryptographic systems resistant to quantum attacks. Such attacks exploit the vulnera-

bility in private and public key encryption systems, where the public key is derived from 

the private key, which could be refactored from the public key. To address this issue, 

the National Institute of Standards and Technology (NIST) launched a global competi-

tion in 2016 to create quantum-resistant algorithms. CRYSTALS-Kyber, a lattice-based 

algorithm focused on the learning with errors (LWE) problem, was selected for standar-

dization. This work introduces RKyber, a variant that instead targets the learning with 

rounding (LWR) problem, simplifying computations by using deterministic errors rather 

than random noise. Both algorithms were executed 1000 times, showing that RKyber 

offers improved speed at the cost of some security.

KEYWORDS: post-quantum / lattice-based / quantum computing / Kyber / quantum 
cryptanalysis
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CRIPTOGRAFÍA BASADA EN RETÍCULAS: DESARROLLO Y ANÁLISIS DE UNA NUEVA 
VARIANTE DEL ALGORITMO CRYSTALS-KYBER

RESUMEN. La inminente llegada de la computación cuántica ha hecho necesario el 

desarrollo de sistemas criptográficos resistentes a los ataques cuánticos. Los ataques 

cuánticos explotan la debilidad de la encriptación de llave pública y privada, la cual 

radica en que la llave pública es derivada desde la llave privada y esta última podría ser 

factorizada a partir de la llave pública. En respuesta, el NIST inició un concurso mundial 

en 2016 para crear algoritmos resistentes a la computación cuántica. CRYSTALS-Kyber, 

un algoritmo basado en celosía que aborda el problema de Aprendizaje con Errores 

fue seleccionado para su estandarización. Este trabajo introduce una variante, RKyber, 

que en su lugar aborda el problema de Aprendizaje con Redondeo, simplificando los 

cálculos mediante el uso de errores deterministas en lugar de ruido aleatorio. Ambos 

algoritmos se ejecutaron 1000 veces, demostrando que RKyber es más rápido, aunque 

sacrifica algo de seguridad.

PALABRAS CLAVE: poscuántico / basado en retículas / computación cuántica / 
Kyber / criptoanálisis cuántico
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INTRODUCTION

This paper aims to research and demonstrate a modification to the fundamental problem 

solved by the Kyber algorithm. Presenting this research is important, as it explores the 

ramifications derived from modifying the system’s core problem from learning with 

errors (LWE) to learning with rounding (LWR). Quantum computing is widely recognized 

as a threat to most cryptosystems in use today and LWR is known to be computationally 

comparable to LWE, meaning that breaking the encryption of one should be as challen-

ging as decrypting the other. However, no research has specifically addressed this 

modification within the newly standardized CRYSTALS-Kyber algorithm. This knowledge 

gap has therefore been selected as a focal point for this study.

This paper provides the necessary background to understand the topic, as well as 

the algorithmic demonstration and brute-force tests conducted on the modified algo-

rithm named RKyber (short for “Rounded Kyber”). The first section covers the theoretical 

framework, establishing the essential background. This is followed by a description of 

the methodology and experimental design. The final sections discuss the experimental 

results, provide a brief analysis, and present the final conclusions of the research.

BACKGROUND

2.1 Quantum Computing

Quantum computing is a paradigm that has seen recent advancements at the hardware 

level, though research in this field has been ongoing for about 50 years. It began with 

Stephen Wiesner’s concept of conjugate coding (Mor & Renner, 2014), a system in which 

multiple messages were transmitted, but reading one would destroy the others. In the 

following years, Benioff (1980) described the Turing machine using Schrödinger’s equa-

tion and created a model for a quantum computer in 1982 (Mor & Renner, 2014). Based on 

this model, mathematician Peter Shor and computer scientist Lov Grover each developed 

a famous algorithm: Shor’s algorithm, which uses quantum Fourier transform (QFT) to 

break many current encryptions (Shor, 1997), and Grover’s algorithm, which significantly 

accelerates database searches (Grover, 1996).

The basis of this paradigm is the qubit, which primarily focuses on superposition 

and error correction. Superposition allows a single qubit to represent two values at the 

same time. As shown in Figure 1, qubits are represented on “Bloch spheres,” with two 

opposing poles corresponding to “1” or “0” and a vector pointing to an arbitrary position 

on the sphere. Depending on the vector’s direction, there is a higher or lower probability 

of receiving a “1” or “0” when measuring the qubit. This probability distribution must 

follow the linear equation presented in Equation (1):

|ψ⟩  =  α|0⟩  +  β|1⟩ (1)
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Where ψ is the probability column vector and must meet the limits of Equation (2):

|α|2 +  |β|2 = 1 (2)

Where α represents the probability of a 0 measurement and β a 1 measurement.

Figure 1

Representation of a Qubit with a Bloch Sphere

The goal of this technology is to enhance processes currently considered effi-

cient, surpassing the limits known in classical computing. Aaronson and Chen’s (2017) 

complexity theory discuss the concept of quantum supremacy, which is expected to be 

achieved soon, especially in the field of cryptography. In response to this, algorithms 

designed to resist the impending threat of quantum computing have been developed. 

One of these resistant algorithms or “post-quantum” cryptographic algorithms is the 

CRYSTALS-Kyber algorithm, which has successfully passed numerous tests and is on 

the path toward standardization by the National Institute of Standards and Technology 

(NIST) (Avanzi et al., 2021). This algorithm addresses the LWE problem, which is based 

on the difficulty of solving linear equations in a finite field with noise (Peikert, 2016; 

Lyubashevsky et al., 2010).

2.2 Lattice-Based Identity

The lattice-based family of algorithms focuses on addressing specific problems that defi-

ne their particularities, namely the closest vector problem (CVP), shortest vector problem 

(SVP), and shortest independent vector problem (SIVP). All solutions to these problems 

are considered during the generation of vector sets used to create points within the finite 

field containing all lattices (Peikert, 2016). Lattices are defined as a discrete subgroup L 

of ℝn, where L contains the linear combination of vectors, as seen in Equation (3):

1 +  2 + ⋯+         with     , ,⋯ ,      ∧   1, 2,⋯ ,    (3)
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The base of the lattice is usually represented in the form shown in Equation (4):

 ∑  =1         ∈  Z (4)

Where r refers to the rank or dimension of the lattice. If r equals the dimension n, it 

is considered a full-rank lattice (Micciancio & Goldwasser, 2002). This definition is repre-

sented with a matrix V that generalizes the dimensional vectors, as shown in Equation (5):

   ,    =  {  ,    } (5)

In this context, Vx represents the linear combination of vectors generating points 

collectively known as a lattice. These combinations are the solutions provided by the 

algorithms for the presented problems. From a cryptographic perspective, these solu-

tions are used to encrypt and send messages. During this process, two sets of vectors 

of the same rank are generated, and their linear combination creates the same points in 

a given space. One set is designated as the public key and the other as the private key. 

The private key will have a combination that is easier to calculate to reach a point i, and it 

should only be accessible to the user (Micciancio & Goldwasser, 2002).

This public–private key cryptographic method is used in message exchange. When 

user A sends a message to user B, user A employs user B’s public key to encrypt the 

message, allowing user B to decrypt it with their own private key. In lattice-based cryp-

tography, the message is assigned by user A employing user B’s public key to a point in 

the subgroup LB (Lyubashevsky et al., 2010).

2.3 CRYSTALS-Kyber – Key Generation

The Kyber algorithm utilizes vector principles. A relatively simple base vector is used as 

the private key s and a derived public key t. Public key generation requires a matrix of 

random polynomials A of the same dimension as the private key and an error vector e 

(Avanzi et al., 2021). This error vector is the proposed solution to the LWE problem. They 

are defined as shown in Equation (6):

(6)= ( + −1
−1 + ⋯+ 0 ; + −1

−1 + 0  ; + −1
−1 + ⋯+ 0)

Where the coefficients a, b, ..., k belong to the integers in dimension n (ℤn). Likewise, 

the matrix A is defined as shown in Equation (7):

(7)
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The error vector e is defined in the form shown in Equation (8):

(8) =  (  + −1 +  .  .  .  +  ) ,   a , b,  .  .  .  ,  k  ϵ 

This results in the derivation of the public key vector t, defined in Equation (9):

t = As + e (9)

The key generation algorithm works as shown in Algorithm 1, where coefficients a 

are restricted to values between -3 and 3, and the parameter q is the commonly used 

modulo 3329 (Avanzi et al., 2021).

Algorithm 1: Key Generation 
1. Start 
2.     Generate key s 
3.         S = + −1

−1 + ⋯+ 1
0 ℎ  [−3.3] 

4.      Assign value to q 
5.         q = 3329 
6.     Generate matrix A 
7.         A = [ 11( ) 21( ) … ( )] 
8.     Generate public key t 
9.         T = As + e  
10. Return (s, t, A) 
11. End 
 

2.4 CRYSTALS-Kyber – Encryption

The encryption method of the Kyber algorithm works as follows. A random vector of 

polynomials r is generated, matching the dimension of the previous keys, along with two 

error vectors, e1 and e2. The polynomials in these vectors are relatively small, similar 

to the vector s (Avanzi et al., 2021). For encryption, the message is transformed into its 

binary representation, where each bit n of the message is used as a coefficient, as shown 

in Equation (10):

(10) =  1 +  .  .  .  +    ,    n ϵ  {1; 0}

The polynomial presented in Equation (11) is multiplied by the nearest integer to the 

quotient, resulting in the polynomial m. This polynomial m is then encrypted using the 

public key (A, t), resulting in the values (u, v).

(11)

Where the polynomial u is defined as shown in Equation (12):

(12) =  + 1
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And the polynomial v is defined in Equation (13):

(13)= + 2 +

The encryption process is demonstrated in Algorithm 2. This algorithm first asks 

whether the input value is a string or an integer. A constant n, which in this case is the 

dimension used for encryption, is assigned a value of 256 (Avanzi et al., 2021).

Algorithm 2: Encryption 
1. Start 
2.     Input value x to encrypt 
3.     If x is integer: 
4.         Transform it to binary value (x)10 = (x)2 
5.         With (x)2 :  = P( ) = + −1 x −1 + ⋯+  0

0   where  ϵ  {0.1} 
6.         = ∗  

2
 

7.     Else if x is string: 
8.         Transform to binary value (x) = (x)2 
9.         If elements in (x)2  >  n: 

10.             Create blocks where the elements of (x)2 <= n where n = 256 and add to list L 
11.     Generate random vector (r) 
12.     Calculate values u, v : 
13.         u =  r +  1 
14.          v =  r +  2 + m  
15.     Return (u, v) 
16. End 

2.5 CRYSTALS-Kyber – Decryption

The decryption method uses the private key s and the resulting polynomials (u, v). The 

remainder will be called mn, which will be noisy due to the error vectors generated in 

the previous steps that modify the result. The resulting coefficients in mb are compared 

with the value of q/2, and if a coefficient is closer to this value, it will be replaced with 

it. If it is closer to 0 or q, it will be replaced with 0. The result is then divided by q/2, and 

the coefficients become the original bits of the sent message (Avanzi et al., 2021). See 

Equation (14):

(14) =   −  

Expanding the result, mn is presented in Equation (15):

(15) =  r +  2 + m +  1

Finally, the coefficients nk make up the sent message, represented by its bits, as 

shown in Equation (16):

(16)
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The decryption process is demonstrated in Algorithm 3 where the conditional 

executes for each coefficient i on the noisy value mn. Finally, it returns the res which 

would be the original encrypted message (Avanzi et al., 2021).

Algorithm 3: Decryption 
1. Start 
2.     Input values to decrypt (u,v) 
3.     Calculate noisy value 
4.          =  v − u 
5.     For each coefficient (i) of mn :  
6.         If  –

2
 <  |  –  |   –

2
 <  |0 | : 

7. Then i =  
2
 

8.        Else: 
9.                 Then i =  0 

10.     Calculate original value: 
11.          =  ∗ 1

2
 

12.         Return res 
13. End

 

The CRYSTALS-Kyber algorithm addresses the LWE problem from the lattice-based 

algorithm family. Additionally, there is a main extension to this problem known as LWR 

(Alwen et al., 2013). The main difference between the LWR and LWE cryptosystems is 

shown in Equation (9). The lack of the error vector and the addition of the parameter p 

results in a key as shown in Equation (17):

(17) =

The cryptosystem built around the LWR problem assumes that the complexity of 

reducing the quotient product of the parameters p and q, matrix A, and vector s is suffi-

cient to withstand quantum attacks. Therefore, the error vector can be removed without 

compromising security (Alwen et al., 2013).

2.6 LWE, LWR, and Reverse Engineering Methodology

The LWE problem enhances encryption security by adding pseudo-random noise to 

polynomial rings, making it challenging to solve without the private key. In contrast, 

LWR simplifies the process by removing random noise and using deterministic roun-

ding errors, which makes the algorithm more efficient while maintaining security 

(Lyubashevsky et al., 2010; Regev, 2005). If the ratio between p and q is large enough, LWR 

provides computational improvements without significantly compromising the security. 

In 2024, researchers from NTT DATA demonstrated a reverse engineering attack 

on algorithms like Kyber. Their method reduces the number of polynomial calculations 

by exploiting known public key parameters and minimizing the possible values of the 
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error vector (NTT DATA Perú, 2024). Using regression and projection techniques, this 

approach estimates private key values based on the time taken to break the encryption. 

Although not a direct attack on the encryption itself, this method narrows down potential 

key values by limiting the error vectors to a few discrete options, thereby speeding up 

brute-force attacks.

3.  METHODOLOGY

The methodology follows the structured process shown in Figure 2. First, the CRYSTALS-

Kyber algorithm was analyzed to identify areas suitable for modification. After validating 

the resources, a prototype of the variant was designed and implemented. The final step 

involved executing brute-force attacks to evaluate the security of both the original algo-

rithm and its variant.

Figure 2

Methodology Followed in the Development of the RKyber Variant

3.1 CRYSTALS-Kyber Algorithm Analysis

To start, an analysis of the original CRYSTALS-Kyber algorithm was conducted to identi-

fy specific areas requiring modification in order to achieve the proposed variant design. 

The algorithm presented in the previous section consists of multiple steps to accomplish 

its task of protecting messages. For simplification, these steps are divided into three 

methods. The first method involves generating public and private keys, the second hand-

les encryption, and the third manages decryption (Avanzi et al., 2021).

The authors of the algorithm propose a security solution that addresses the LWE 

problem (Avanzi et al., 2021). This involves adding noise or errors to a point or lattice 
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within the discrete group L. In this case, the researchers added random error vectors 

e, e1, and e2 across the different methods. These error vectors add security by slightly 

obfuscating the encrypted message (Avanzi et al., 2021; Lyubashevsky et al., 2010), 

but they also increase the computational cost and, consequently, the execution time. It 

should be noted that these vectors create small and controlled errors, meaning that if the 

algorithm’s steps are followed, the message will never be lost during execution.

3.2  Variant Design and Implementation

The proposed variant involves taking the base algorithm and addressing another 

problem from the lattice-based family. While the CRYSTALS-Kyber algorithm solves the 

LWE problem (Wei et al., 2023), this variant focuses on addressing its extension, LWR 

(Alwen et al., 2013). The LWR problem centers around the idea that the security provided 

by polynomial vectors in key creation is sufficient, and that the additional computatio-

nal cost introduced by polynomial error vectors can be reduced by replacing them with 

deterministic errors generated by the parameters p and q (Alwen et al., 2013). As a result, 

the following equations were modified to remove the error vectors. Equation (9) takes the 

form presented in Equation (18):

t =  

u =  

v = + m
2

= −   

=
2 

od 2 

(18)

The polynomial u is modified as shown in Equation (19):

t =  

u =  

v = + m
2

= −   

=
2 

od 2 

(19)

The polynomial v is modified as shown in Equation (20):

t =  

u =  

v = + m
2

= −   

=
2 

od 2 

(20)

The noisy result mn takes the form shown in Equation (21):

t =  

u =  

v = + m
2

= −   

=
2 

od 2 

(21)

Finally, the result must be rescaled to obtain the original value, as presented in 

Equation (22):

t =  

u =  

v = + m
2

= −   

=
2 

od 2 (22)

Python was selected for implementing the variant due to its suitability for polyno-

mial and matrix calculations, which simplified the mathematical operations required by 
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these equations (Gonzalez, 2021). Additionally, the tests to verify the effectiveness of the 

algorithm were also conducted in the same programming language.

The three modified algorithms are presented in Algorithm 4, Algorithm 5, and 

Algorithm 6. In Algorithm 4, key generation is shown, where the keys s and t must be 

generated along with matrix A. These functions receive global parameters q and n, which 

represent the space and maximum dimension, respectively. During this first phase, the 

value of p is generated, which —together with q— defines the rounded space for the system.

Algorithm 4: Key Generation 
1. Start 
2.     Generate key s 
3.         S = + −1

−1 + ⋯+ 1
0 ℎ   [−3.3] 

4.     Generate space value p 
5.         q =  3329 
6.         P =  k   while  k <  q  
7.     Generate matrix A 
8.         A = [ 11( ) 21( ) … ( )] 
9.     Generate public key t 
10.         T =  ∗  ( )  
11. Return (s, t, A) 
12. End

In Algorithm 5, the encryption process is shown. This involves handling both text 

strings and numbers. The initial transformation step requires converting the input 

message into its binary form. In the case of numbers, this is relatively straightforward. 

However, for text, the number generated must be checked to ensure it does not exceed 

the established dimension n. If it does, it is divided into blocks with elements smaller 

than or equal to dimension n. Subsequently, the operations are carried out, generating 

both u and v along with a pseudo-random vector r. The encryption process concludes by 

returning the encrypted pair (u,v).

Algorithm 5: Encryption 
1. Start 
2.     Input value x to encrypt 
3.     If x is integer: 
4.         Transform it to binary value (x)10 = (x)2 
5.        With (x)2 :  = P( ) = + −1 −1 + ⋯+  0

0   where  ϵ  {0.1} 
6.         M = ∗  

2
 

7.     Else if x is string: 
8.         Transform to binary value (x) = (x)2 
9.         If elements in (x)2  >  n: 

10.             Create blocks where the elements of (x)2 <= n where n = 256 and add to list L 
11.     Generate random vector (r) 
12.     Calculate values u, v : 
13.         u =
14.         v = + m

2
15.     Return (u, v) 
16. End 
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Finally, in Algorithm 6, the decryption process is shown. Here, the established keys 

are considered as global variables, while the encrypted pair (u,v) is given as an argument. 

The noisy result mn is calculated. For each coefficient i, the distance is compared with q/2  

, q, and 0. If i is closer to q/2 , it will be assigned that value; otherwise, if its distance to q 

or 0 is smaller, it will be assigned 0. The result is then scaled back to retrieve the original 

value.

Algorithm 6: Decryption 
1. Start 
2.     Input values to decrypt (u,v) 
3.     Calculate noisy value 
4.          =  v − u ∗  
5.     For each coefficient (i) of mn :  
6.         If  –

2
 <  |  –  |   –

2
 <  |0 | : 

7.                 Then i =  
2
 

8.        Else: 
9.                 Then i =  0 

10.     Calculate original value: 
11.          =  ∗ 1

2
 

12.         Return res 
13. End 

3.3 Experimental Design

The first step in conducting the experiment was to implement the algorithm based on 

the formulated equations. Matrix and vector operations were managed using the NumPy 

library. Once the implementation was completed, each stage of the algorithm was tested 

to verify that it used the necessary modified and added parameters to consider the chan-

ge toward LWR (Alwen et al., 2013). The second step involved implementing a brute-force 

attack method using reverse engineering as presented by NTT DATA (NTT DATA Perú, 

2024).

The original Kyber algorithm and its RKyber variant were refactored and imple-

mented respectively in Python. The time in seconds required to generate both public and 

private keys was recorded for dimensions (n) ranging from 2 to 13. Using this data, the 

exponential function was applied to project values for larger dimensions, extending up 

to 256, which is the official value for the original versions (Gonzalez, 2021). The execu-

tion times for each method of both algorithms were compared. Finally, it is worth noting 

that the implementation of the original algorithm followed the official NIST documen-

tation for the competition (Avanzi et al., 2021), while the modification was based on the 

work by Alwen et al. (2013). The algorithm was executed on a machine with the following 

specifications: Core i5-11300H processor, 24GB RAM, Windows 11 operating system, and 

GeForce RTX 3050 GPU.
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3.4 Variant Evaluation

Once the implementation of the variant was completed, we focused on comparing the 

execution times for each part of the algorithm: key generation, encryption, and decryp-

tion. This evaluation involved executing each part of the algorithm 1000 times for both 

the original Kyber algorithm and its variant. The primary objectives of the variant were 

to improve computational resource efficiency compared to the original algorithm. The 

decryption process necessarily required equations resulting in u and v. It was essential 

to perform all calculations related to key generation and encryption. The public key takes 

the form presented in Equation (9), which can be expressed as shown in Equation (23):

(23)

Where the elements of the matrices are generated based on X, with each element of 

matrix A being a negacyclic matrix (Gonzalez, 2021). This expression applies to Kyber512, 

where the coefficients of s
i
(X) are only restricted to {-3, -2, -1, 0, 1, 2, 3}. This range gene-

rates 7512 possibilities for the private key. In the case of Kyber768, it involves a 3x3 

matrix A, and for Kyber1024, a 4x4 matrix A (Gonzalez, 2021). Considering that the error 

vector is removed in the RKyber variant, and this vector dimension increases with each 

Kyber version, the estimated security loss is proportional to the number of polynomials 

removed. For RKyber512, the public key is calculated as presented in Equation (24):

(24)

Given the numerous private key possibilities, the corresponding public key becomes 

unfathomably large. In a reduced example, where values are divided into two polynomials 

for the key s, the number of possibilities was calculated to be 76. In this same example, 

the remaining polynomials would need to be assigned to matrix A, requiring 7500 calcu-

lations. This results in a total of 7512 calculations. Based on this estimate, the projected 

security loss for RKyber512 is 1.17 %. For RKyber768 and RKyber1024, the estimated loss 

is 0.7 % and 0.5 %, respectively, assuming that the security loss is directly proportional to 

the number of removed polynomial operations. 

The time required to break the encryption was estimated using reverse engineering 

and regression analysis. Following NTT researchers (NTT DATA Perú, 2024), this reverse 

engineering approach minimizes all the possible variables in the key generation method. 

The number of possible values was reduced from 76 to 36 by using only the values {-1, 

0, 1}. In this method, matrix A is known, so only the private key s, divided into s1 and s2, 

needs to be addressed. Moreover, the parameters p and q are known, as they are defined 

at the start of the execution. The results are derived as presented in Equation (25):
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(25)

In the original algorithm, error vectors were included in the key generation process, 

resulting in 36 possibilities (Avanzi et al., 2021). However, since this variant removes the 

error vector, the number of possibilities is further reduced to 34.

4 RESULTS

4.1 Analysis Results

Starting with the original CRYSTALS-Kyber algorithm, the first method involves gene-

rating the matrix A, the private key s, the error vector e, and calculating the public key 

t. Since generating matrix A is the most complex operation in terms of time and space, 

it dictates the complexity of the key generation method, with a time complexity of O(n²) 

and a space complexity of O (n² log q). Here, q refers to the space in which the polynomial 

coefficients are generated. The second method, encryption, generates vector r and the 

pair of encrypted message values u and v. The space complexity for this method is O (n 

log q), while the time complexity is O(n²), again generated in space q. Finally, the decryp-

tion method runs in O (log q) space and O(n) time, as reversing the message is relatively 

simpler to store and execute.

In the RKyber variant, no error vector e is generated. Instead, it works with an addi-

tional parameter p, which creates a “deterministic error” in place of the pseudo-random 

error seen in LWE. The first key generation method runs with O (n² log q) space and 

O(n²) time. However, in this case, the public key is generated within space p rather than 

q, as seen in Equation (18). The second encryption method has the same time and space 

complexity as its LWE counterpart, with O (n log q) for space and O(n²) for time. The main 

difference lies in how the vectors u and v are generated in space p rather than q. Finally, 

the decryption method runs in O (log p) space and O(n) time.

4.2 Experimental Results

4.2.1 Execution Time Tests

The results from the experiment consist of the execution times for each part of both 

algorithms, averaged over 1 000 runs per stage. The Kyber algorithm has three versions 

in terms of security: Kyber512 (lower security, faster), Kyber768, and Kyber1024 (higher 
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security, more time-consuming). The following tables show the execution times for both 

the original algorithm and the RKyber variant across Kyber512, Kyber768, and Kyber1024.

Table 2

Execution Times in Milliseconds for RKyber512 and Kyber512

RKyber 512 Kyber512

Time per Stage 
(in ms)

Keygen Encryption Decryption Keygen Encryption Decryption

Maximum 12.002 27.526 46.002 17.010 22.002 55.999

Minimum 3.997 7.945 14.225 4.032 7.998 14.612

Median 5.430 9.420 16.181 5.611 9.723 16.658

Standard 
Deviation

0.804 1.068 1.887
0.881 1.197 2.039

Total 5.43 9.42 16.18 5.6 9.72 16.65

Table 3

Execution Times in Milliseconds for RKyber768 and Kyber768

RKyber768 Kyber768

Time per Stage 
(in ms)

Keygen Encryption Decryption Keygen Encryption Decryption

Maximum 35.675 51.999 72.510 45.556 41.000 88.998

Minimum 7.600 12.618 21.409 7.996 12.998 21.868

Median 9.251 14.586 24.153 9.619 15.051 24.957

Standard Deviation 1.531 2.558 3.598 2.014 1.874 3.598

Total 9.25 14.58 24.15 9.61 15.05 25.12

Table 4

Execution Times in Milliseconds for RKyber1024 and Kyber1024

RKyber1024 Kyber1024

Time per Stage (in 
ms) Keygen Encryption Decryption Keygen Encryption Decryption

Maximum 43.998 83.237 113.001 70.714 94.000 125.999

Minimum 12.533 19.023 31.160 11.997 18.204 29.708

Median 14.759 21.884 35.271 14.665 21.739 34.774

Standard Deviation 1.872 3.695 5.064 4.166 5.574 7.521

Total 14.664 21.73 34.77 14.75 21.88 36.27

These results show that RKyber achieves slightly faster execution times than the 

original Kyber algorithm. As the algorithm’s complexity increases with the security level 

(from Kyber512 to Kyber1024), the differences in execution times become more apparent. 
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To model these results, parameters n (degree of polynomials), k (number of polynomials), 

and N (possible range of coefficient values) were used (NTT DATA Perú, 2024).

4.2.2 BRUTE-FORCE ATTACK TESTS

This section presents brute-force security tests conducted for each algorithm. These 

tests involved incrementally increasing the polynomial dimensions from the lowest to 

the highest possible values to project the time required to break these algorithms using 

brute force. The results are shown in Table 5 and Figures 3 and 4.

Table 5

Brute-Force Attack Times for RKyber512 and Kyber512

n Kyber RKyber 

2 0.000529162 0.000525681

3 0.001454904 0.001440572

4 0.004000182 0.003947727

5 0.010998292 0.010818309

6 0.030239226 0.029646378

7 0.083141166 0.081242618

8 0.228592276 0.222636403

9 0.628502473 0.610110424

10 1.728034584 1.671940092

11 4.751140451 4.581766782

12 13.06301146 12.55582478

13 35.91606484 34.40784821

Using the results from the attack executions, the exponential function that fits the 

attack times can be determined. This allows for the estimation of approximate values for 

N = 256, which is the standard value used in these algorithms.
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Figure 3

Brute-Force Attack on Kyber512

Figure 4

Brute-Force Attack on RKyber512

These results demonstrate that RKyber is slightly easier to break using brute-

force attacks, but the difference is negligible. For example, with N = 30, the estimated 

execution time to break RKyber is approximately 12 years. With N = 256, the attack would 

take an incalculable amount of time using current technology, meaning that the variant 

remains secure. In summary, RKyber offers computational advantages in execution time 

without significantly compromising security, making it a viable alternative to the original 

algorithm in environments where speed is critical and extreme security is not required.
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5. DISCUSSION

As seen in the results from Tables 2, 3, and 4, the execution times for the RKyber variant 

are shorter than those for the original Kyber algorithm. This improvement occurs becau-

se, in RKyber, errors are no longer generated randomly; instead, they are converted 

into deterministic values, simplifying the algorithm’s execution and computation. At first 

glance, the time difference may not seem significant. However, it is important to consider 

that these are cumulative results over 1000 executions, where a difference of just 1 ms 

per execution can add up substantially. On the other hand, the trade-off for this improve-

ment in execution time is a reduction in security. The original Kyber algorithm introduced 

random noise, including an additional security layer by making it more difficult for 

attackers to reverse-engineer the encryption. In RKyber, this noise has been removed, 

making it theoretically more vulnerable. However, it should be emphasized that RKyber 

remains resistant to quantum attacks, as the underlying lattice is unchanged, meaning 

an attacker would still need to find the correct polynomial to decrypt the message. So 

far, no practical attack has fully compromised Kyber’s security. The only known attack, 

KyberSlash (Bernstein, 2024), assumes direct access to the processor where the system 

is running, making it incredibly difficult to execute. Dr. Daniel Bernstein has tracked this 

attack and reported that the original implementation has already been patched to miti-

gate this threat.

In terms of complexity, the biggest difference between the two algorithms lies in 

the space used in the generations. The LWE-based version of Kyber primarily uses q 

space, whereas the RKyber variant uses p space (Alwen et al., 2013). However, the overall 

complexity remains the same, as p is always smaller than q, making this difference negli-

gible in terms of asymptotic bounds.

Originally, this study aimed to simulate an attack using Shor’s quantum algorithm, 

since it efficiently breaks current public-key schemes. However, it became clear that 

such attacks are not feasible, at least at the time of writing this report. The reason is the 

way Shor’s algorithm inputs and outputs data. In this case, the input should be a number, 

and the output should be its prime factors. Given that the fundamental bases of lattices 

are polynomials stored in vectors, factoring them in this way is not possible. A more 

appropriate solution would involve using Grover’s algorithm to optimize coefficient gene-

ration, though this was not tested in this research. Using Grover’s algorithm along with 

the reverse-engineering method could be a potential solution.

To estimate the time needed to break the algorithm, a statistical analysis was 

conducted based on the time (in seconds) recorded during key generation across multiple 

experiments. A simple statistical model was built using the input parameters n, k, and N 

(Gonzalez, 2021). This model allowed for the projection of breaking times for different 

configurations.
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6. CONCLUSIONS

This paper introduces a new perspective on the CRYSTALS-Kyber algorithm by modifying 

the core problem it addresses and extending it to the LWR problem. The resulting variant, 

named RKyber, significantly improves execution times at the cost of a slight reduction 

in security. The primary objective of this work was to transition from LWE to LWR and 

test the modified algorithm. The change inherently compromises security by removing 

the pseudo-random obfuscation method used in LWE encryption systems, resulting in a 

trade-off between efficiency and security. However, the reduction in security does not 

render the algorithm unusable.

Many systems do not require extremely high levels of security, and as discussed 

in Section 5, the security loss is minimal. The time needed to break RKyber using brute-

force attacks remains prohibitive with current technology, ensuring that the variant is 

still resistant to quantum attacks. Furthermore, RKyber’s improvements in execution 

time could be advantageous in environments where resource efficiency is a priority. 

The transition from LWE to LWR supports the hypothesis that both pseudo-random and 

deterministic errors are computationally congruent. Alwen et al. (2013) suggest that the 

decryption step, where the error is handled, is the most computationally demanding part 

of the system. By removing the need to deal with LWE’s pseudo-random error, the algo-

rithm becomes more efficient without significantly compromising security. This holds 

true for all versions of Kyber (512, 768, 1024), where the only significant changes are the 

parameters involved in the key generation, encryption, and decryption processes.
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