
Interfases n.° 20, diciembre 2024, ISSN (en línea) 1993-4912, pp. 163-182

Lattice-Based Cryptography: Development
and Analysis of a New Variant of the
Crystals-Kyber Algorithm

Mauricio Sebastian Cisneros Laule
smlaulet@gmail.com

https://orcid.org/0009-0007-4056-4467
Universidad de Lima, Peru

Javier Enrique Olazabal Silva
javierenriqueos@gmail.com

https://orcid.org/0009-0003-2728-8614
Universidad de Lima, Peru

Hernan Nina Hanco
hninaha@ulima.edu.pe

https://orcid.org/0000-0003-0230-5812
Universidad de Lima, Peru

Received: September 8th, 2024 / Accepted: October 12th, 2024
doi: https://doi.org/10.26439/interfases2024.n020.7383

ABSTRACT. The imminent arrival of quantum computing has accelerated the need for

cryptographic systems resistant to quantum attacks. Such attacks exploit the vulnera-

bility in private and public key encryption systems, where the public key is derived from

the private key, which could be refactored from the public key. To address this issue,

the National Institute of Standards and Technology (NIST) launched a global competi-

tion in 2016 to create quantum-resistant algorithms. CRYSTALS-Kyber, a lattice-based

algorithm focused on the learning with errors (LWE) problem, was selected for standar-

dization. This work introduces RKyber, a variant that instead targets the learning with

rounding (LWR) problem, simplifying computations by using deterministic errors rather

than random noise. Both algorithms were executed 1000 times, showing that RKyber

offers improved speed at the cost of some security.

KEYWORDS: post-quantum / lattice-based / quantum computing / Kyber / quantum
cryptanalysis

Interfases n.o 20, diciembre 2024164

M. S. Cisneros, J. E. Olazabal, H.Nina

CRIPTOGRAFÍA BASADA EN RETÍCULAS: DESARROLLO Y ANÁLISIS DE UNA NUEVA
VARIANTE DEL ALGORITMO CRYSTALS-KYBER

RESUMEN. La inminente llegada de la computación cuántica ha hecho necesario el

desarrollo de sistemas criptográficos resistentes a los ataques cuánticos. Los ataques

cuánticos explotan la debilidad de la encriptación de llave pública y privada, la cual

radica en que la llave pública es derivada desde la llave privada y esta última podría ser

factorizada a partir de la llave pública. En respuesta, el NIST inició un concurso mundial

en 2016 para crear algoritmos resistentes a la computación cuántica. CRYSTALS-Kyber,

un algoritmo basado en celosía que aborda el problema de Aprendizaje con Errores

fue seleccionado para su estandarización. Este trabajo introduce una variante, RKyber,

que en su lugar aborda el problema de Aprendizaje con Redondeo, simplificando los

cálculos mediante el uso de errores deterministas en lugar de ruido aleatorio. Ambos

algoritmos se ejecutaron 1000 veces, demostrando que RKyber es más rápido, aunque

sacrifica algo de seguridad.

PALABRAS CLAVE: poscuántico / basado en retículas / computación cuántica /
Kyber / criptoanálisis cuántico

Interfases n.o 20, diciembre 2024 165

Lattice-Based Cryptography: Development and Analysis of a New Variant of the Crystals-Kyber Algorithm

INTRODUCTION

This paper aims to research and demonstrate a modification to the fundamental problem

solved by the Kyber algorithm. Presenting this research is important, as it explores the

ramifications derived from modifying the system’s core problem from learning with

errors (LWE) to learning with rounding (LWR). Quantum computing is widely recognized

as a threat to most cryptosystems in use today and LWR is known to be computationally

comparable to LWE, meaning that breaking the encryption of one should be as challen-

ging as decrypting the other. However, no research has specifically addressed this

modification within the newly standardized CRYSTALS-Kyber algorithm. This knowledge

gap has therefore been selected as a focal point for this study.

This paper provides the necessary background to understand the topic, as well as

the algorithmic demonstration and brute-force tests conducted on the modified algo-

rithm named RKyber (short for “Rounded Kyber”). The first section covers the theoretical

framework, establishing the essential background. This is followed by a description of

the methodology and experimental design. The final sections discuss the experimental

results, provide a brief analysis, and present the final conclusions of the research.

BACKGROUND

2.1 Quantum Computing

Quantum computing is a paradigm that has seen recent advancements at the hardware

level, though research in this field has been ongoing for about 50 years. It began with

Stephen Wiesner’s concept of conjugate coding (Mor & Renner, 2014), a system in which

multiple messages were transmitted, but reading one would destroy the others. In the

following years, Benioff (1980) described the Turing machine using Schrödinger’s equa-

tion and created a model for a quantum computer in 1982 (Mor & Renner, 2014). Based on

this model, mathematician Peter Shor and computer scientist Lov Grover each developed

a famous algorithm: Shor’s algorithm, which uses quantum Fourier transform (QFT) to

break many current encryptions (Shor, 1997), and Grover’s algorithm, which significantly

accelerates database searches (Grover, 1996).

The basis of this paradigm is the qubit, which primarily focuses on superposition

and error correction. Superposition allows a single qubit to represent two values at the

same time. As shown in Figure 1, qubits are represented on “Bloch spheres,” with two

opposing poles corresponding to “1” or “0” and a vector pointing to an arbitrary position

on the sphere. Depending on the vector’s direction, there is a higher or lower probability

of receiving a “1” or “0” when measuring the qubit. This probability distribution must

follow the linear equation presented in Equation (1):

|ψ⟩ = α|0⟩ + β|1⟩ (1)

Interfases n.o 20, diciembre 2024166

M. S. Cisneros, J. E. Olazabal, H.Nina

Where ψ is the probability column vector and must meet the limits of Equation (2):

|α|2 + |β|2 = 1 (2)

Where α represents the probability of a 0 measurement and β a 1 measurement.

Figure 1

Representation of a Qubit with a Bloch Sphere

The goal of this technology is to enhance processes currently considered effi-

cient, surpassing the limits known in classical computing. Aaronson and Chen’s (2017)

complexity theory discuss the concept of quantum supremacy, which is expected to be

achieved soon, especially in the field of cryptography. In response to this, algorithms

designed to resist the impending threat of quantum computing have been developed.

One of these resistant algorithms or “post-quantum” cryptographic algorithms is the

CRYSTALS-Kyber algorithm, which has successfully passed numerous tests and is on

the path toward standardization by the National Institute of Standards and Technology

(NIST) (Avanzi et al., 2021). This algorithm addresses the LWE problem, which is based

on the difficulty of solving linear equations in a finite field with noise (Peikert, 2016;

Lyubashevsky et al., 2010).

2.2 Lattice-Based Identity

The lattice-based family of algorithms focuses on addressing specific problems that defi-

ne their particularities, namely the closest vector problem (CVP), shortest vector problem

(SVP), and shortest independent vector problem (SIVP). All solutions to these problems

are considered during the generation of vector sets used to create points within the finite

field containing all lattices (Peikert, 2016). Lattices are defined as a discrete subgroup L

of ℝn, where L contains the linear combination of vectors, as seen in Equation (3):

1 + 2 + ⋯+ with , ,⋯ , ∧ 1, 2,⋯ , (3)

Interfases n.o 20, diciembre 2024 167

Lattice-Based Cryptography: Development and Analysis of a New Variant of the Crystals-Kyber Algorithm

The base of the lattice is usually represented in the form shown in Equation (4):

 ∑ =1 ∈ Z (4)

Where r refers to the rank or dimension of the lattice. If r equals the dimension n, it

is considered a full-rank lattice (Micciancio & Goldwasser, 2002). This definition is repre-

sented with a matrix V that generalizes the dimensional vectors, as shown in Equation (5):

 , = { , } (5)

In this context, Vx represents the linear combination of vectors generating points

collectively known as a lattice. These combinations are the solutions provided by the

algorithms for the presented problems. From a cryptographic perspective, these solu-

tions are used to encrypt and send messages. During this process, two sets of vectors

of the same rank are generated, and their linear combination creates the same points in

a given space. One set is designated as the public key and the other as the private key.

The private key will have a combination that is easier to calculate to reach a point i, and it

should only be accessible to the user (Micciancio & Goldwasser, 2002).

This public–private key cryptographic method is used in message exchange. When

user A sends a message to user B, user A employs user B’s public key to encrypt the

message, allowing user B to decrypt it with their own private key. In lattice-based cryp-

tography, the message is assigned by user A employing user B’s public key to a point in

the subgroup LB (Lyubashevsky et al., 2010).

2.3 CRYSTALS-Kyber – Key Generation

The Kyber algorithm utilizes vector principles. A relatively simple base vector is used as

the private key s and a derived public key t. Public key generation requires a matrix of

random polynomials A of the same dimension as the private key and an error vector e

(Avanzi et al., 2021). This error vector is the proposed solution to the LWE problem. They

are defined as shown in Equation (6):

(6)= (+ −1
−1 + ⋯+ 0 ; + −1

−1 + 0 ; + −1
−1 + ⋯+ 0)

Where the coefficients a, b, ..., k belong to the integers in dimension n (ℤn). Likewise,

the matrix A is defined as shown in Equation (7):

(7)

Interfases n.o 20, diciembre 2024168

M. S. Cisneros, J. E. Olazabal, H.Nina

The error vector e is defined in the form shown in Equation (8):

(8) = (+ −1 + . . . +) , a , b, . . . , k ϵ

This results in the derivation of the public key vector t, defined in Equation (9):

t = As + e (9)

The key generation algorithm works as shown in Algorithm 1, where coefficients a

are restricted to values between -3 and 3, and the parameter q is the commonly used

modulo 3329 (Avanzi et al., 2021).

Algorithm 1: Key Generation
1. Start
2. Generate key s
3. S = + −1

−1 + ⋯+ 1
0 ℎ [−3.3]

4. Assign value to q
5. q = 3329
6. Generate matrix A
7. A = [11() 21() … ()]
8. Generate public key t
9. T = As + e
10. Return (s, t, A)
11. End

2.4 CRYSTALS-Kyber – Encryption

The encryption method of the Kyber algorithm works as follows. A random vector of

polynomials r is generated, matching the dimension of the previous keys, along with two

error vectors, e1 and e2. The polynomials in these vectors are relatively small, similar

to the vector s (Avanzi et al., 2021). For encryption, the message is transformed into its

binary representation, where each bit n of the message is used as a coefficient, as shown

in Equation (10):

(10) = 1 + . . . + , n ϵ {1; 0}

The polynomial presented in Equation (11) is multiplied by the nearest integer to the

quotient, resulting in the polynomial m. This polynomial m is then encrypted using the

public key (A, t), resulting in the values (u, v).

(11)

Where the polynomial u is defined as shown in Equation (12):

(12) = + 1

Interfases n.o 20, diciembre 2024 169

Lattice-Based Cryptography: Development and Analysis of a New Variant of the Crystals-Kyber Algorithm

And the polynomial v is defined in Equation (13):

(13)= + 2 +

The encryption process is demonstrated in Algorithm 2. This algorithm first asks

whether the input value is a string or an integer. A constant n, which in this case is the

dimension used for encryption, is assigned a value of 256 (Avanzi et al., 2021).

Algorithm 2: Encryption
1. Start
2. Input value x to encrypt
3. If x is integer:
4. Transform it to binary value (x)10 = (x)2
5. With (x)2 : = P() = + −1 x −1 + ⋯+ 0

0 where ϵ {0.1}
6. = ∗

2

7. Else if x is string:
8. Transform to binary value (x) = (x)2
9. If elements in (x)2 > n:

10. Create blocks where the elements of (x)2 <= n where n = 256 and add to list L
11. Generate random vector (r)
12. Calculate values u, v :
13. u = r + 1
14. v = r + 2 + m
15. Return (u, v)
16. End

2.5 CRYSTALS-Kyber – Decryption

The decryption method uses the private key s and the resulting polynomials (u, v). The

remainder will be called mn, which will be noisy due to the error vectors generated in

the previous steps that modify the result. The resulting coefficients in mb are compared

with the value of q/2, and if a coefficient is closer to this value, it will be replaced with

it. If it is closer to 0 or q, it will be replaced with 0. The result is then divided by q/2, and

the coefficients become the original bits of the sent message (Avanzi et al., 2021). See

Equation (14):

(14) = −

Expanding the result, mn is presented in Equation (15):

(15) = r + 2 + m + 1

Finally, the coefficients nk make up the sent message, represented by its bits, as

shown in Equation (16):

(16)

Interfases n.o 20, diciembre 2024170

M. S. Cisneros, J. E. Olazabal, H.Nina

The decryption process is demonstrated in Algorithm 3 where the conditional

executes for each coefficient i on the noisy value mn. Finally, it returns the res which

would be the original encrypted message (Avanzi et al., 2021).

Algorithm 3: Decryption
1. Start
2. Input values to decrypt (u,v)
3. Calculate noisy value
4. = v − u
5. For each coefficient (i) of mn :
6. If –

2
 < | – | –

2
 < |0 | :

7. Then i =
2

8. Else:
9. Then i = 0

10. Calculate original value:
11. = ∗ 1

2

12. Return res
13. End

The CRYSTALS-Kyber algorithm addresses the LWE problem from the lattice-based

algorithm family. Additionally, there is a main extension to this problem known as LWR

(Alwen et al., 2013). The main difference between the LWR and LWE cryptosystems is

shown in Equation (9). The lack of the error vector and the addition of the parameter p

results in a key as shown in Equation (17):

(17) =

The cryptosystem built around the LWR problem assumes that the complexity of

reducing the quotient product of the parameters p and q, matrix A, and vector s is suffi-

cient to withstand quantum attacks. Therefore, the error vector can be removed without

compromising security (Alwen et al., 2013).

2.6 LWE, LWR, and Reverse Engineering Methodology

The LWE problem enhances encryption security by adding pseudo-random noise to

polynomial rings, making it challenging to solve without the private key. In contrast,

LWR simplifies the process by removing random noise and using deterministic roun-

ding errors, which makes the algorithm more efficient while maintaining security

(Lyubashevsky et al., 2010; Regev, 2005). If the ratio between p and q is large enough, LWR

provides computational improvements without significantly compromising the security.

In 2024, researchers from NTT DATA demonstrated a reverse engineering attack

on algorithms like Kyber. Their method reduces the number of polynomial calculations

by exploiting known public key parameters and minimizing the possible values of the

Interfases n.o 20, diciembre 2024 171

Lattice-Based Cryptography: Development and Analysis of a New Variant of the Crystals-Kyber Algorithm

error vector (NTT DATA Perú, 2024). Using regression and projection techniques, this

approach estimates private key values based on the time taken to break the encryption.

Although not a direct attack on the encryption itself, this method narrows down potential

key values by limiting the error vectors to a few discrete options, thereby speeding up

brute-force attacks.

3. METHODOLOGY

The methodology follows the structured process shown in Figure 2. First, the CRYSTALS-

Kyber algorithm was analyzed to identify areas suitable for modification. After validating

the resources, a prototype of the variant was designed and implemented. The final step

involved executing brute-force attacks to evaluate the security of both the original algo-

rithm and its variant.

Figure 2

Methodology Followed in the Development of the RKyber Variant

3.1 CRYSTALS-Kyber Algorithm Analysis

To start, an analysis of the original CRYSTALS-Kyber algorithm was conducted to identi-

fy specific areas requiring modification in order to achieve the proposed variant design.

The algorithm presented in the previous section consists of multiple steps to accomplish

its task of protecting messages. For simplification, these steps are divided into three

methods. The first method involves generating public and private keys, the second hand-

les encryption, and the third manages decryption (Avanzi et al., 2021).

The authors of the algorithm propose a security solution that addresses the LWE

problem (Avanzi et al., 2021). This involves adding noise or errors to a point or lattice

Interfases n.o 20, diciembre 2024172

M. S. Cisneros, J. E. Olazabal, H.Nina

within the discrete group L. In this case, the researchers added random error vectors

e, e1, and e2 across the different methods. These error vectors add security by slightly

obfuscating the encrypted message (Avanzi et al., 2021; Lyubashevsky et al., 2010),

but they also increase the computational cost and, consequently, the execution time. It

should be noted that these vectors create small and controlled errors, meaning that if the

algorithm’s steps are followed, the message will never be lost during execution.

3.2 Variant Design and Implementation

The proposed variant involves taking the base algorithm and addressing another

problem from the lattice-based family. While the CRYSTALS-Kyber algorithm solves the

LWE problem (Wei et al., 2023), this variant focuses on addressing its extension, LWR

(Alwen et al., 2013). The LWR problem centers around the idea that the security provided

by polynomial vectors in key creation is sufficient, and that the additional computatio-

nal cost introduced by polynomial error vectors can be reduced by replacing them with

deterministic errors generated by the parameters p and q (Alwen et al., 2013). As a result,

the following equations were modified to remove the error vectors. Equation (9) takes the

form presented in Equation (18):

t =

u =

v = + m
2

= −

=
2

od 2

(18)

The polynomial u is modified as shown in Equation (19):

t =

u =

v = + m
2

= −

=
2

od 2

(19)

The polynomial v is modified as shown in Equation (20):

t =

u =

v = + m
2

= −

=
2

od 2

(20)

The noisy result mn takes the form shown in Equation (21):

t =

u =

v = + m
2

= −

=
2

od 2

(21)

Finally, the result must be rescaled to obtain the original value, as presented in

Equation (22):

t =

u =

v = + m
2

= −

=
2

od 2 (22)

Python was selected for implementing the variant due to its suitability for polyno-

mial and matrix calculations, which simplified the mathematical operations required by

Interfases n.o 20, diciembre 2024 173

Lattice-Based Cryptography: Development and Analysis of a New Variant of the Crystals-Kyber Algorithm

these equations (Gonzalez, 2021). Additionally, the tests to verify the effectiveness of the

algorithm were also conducted in the same programming language.

The three modified algorithms are presented in Algorithm 4, Algorithm 5, and

Algorithm 6. In Algorithm 4, key generation is shown, where the keys s and t must be

generated along with matrix A. These functions receive global parameters q and n, which

represent the space and maximum dimension, respectively. During this first phase, the

value of p is generated, which —together with q— defines the rounded space for the system.

Algorithm 4: Key Generation
1. Start
2. Generate key s
3. S = + −1

−1 + ⋯+ 1
0 ℎ [−3.3]

4. Generate space value p
5. q = 3329
6. P = k while k < q
7. Generate matrix A
8. A = [11() 21() … ()]
9. Generate public key t
10. T = ∗ ()
11. Return (s, t, A)
12. End

In Algorithm 5, the encryption process is shown. This involves handling both text

strings and numbers. The initial transformation step requires converting the input

message into its binary form. In the case of numbers, this is relatively straightforward.

However, for text, the number generated must be checked to ensure it does not exceed

the established dimension n. If it does, it is divided into blocks with elements smaller

than or equal to dimension n. Subsequently, the operations are carried out, generating

both u and v along with a pseudo-random vector r. The encryption process concludes by

returning the encrypted pair (u,v).

Algorithm 5: Encryption
1. Start
2. Input value x to encrypt
3. If x is integer:
4. Transform it to binary value (x)10 = (x)2
5. With (x)2 : = P() = + −1 −1 + ⋯+ 0

0 where ϵ {0.1}
6. M = ∗

2

7. Else if x is string:
8. Transform to binary value (x) = (x)2
9. If elements in (x)2 > n:

10. Create blocks where the elements of (x)2 <= n where n = 256 and add to list L
11. Generate random vector (r)
12. Calculate values u, v :
13. u =
14. v = + m

2
15. Return (u, v)
16. End

Interfases n.o 20, diciembre 2024174

M. S. Cisneros, J. E. Olazabal, H.Nina

Finally, in Algorithm 6, the decryption process is shown. Here, the established keys

are considered as global variables, while the encrypted pair (u,v) is given as an argument.

The noisy result mn is calculated. For each coefficient i, the distance is compared with q/2

, q, and 0. If i is closer to q/2 , it will be assigned that value; otherwise, if its distance to q

or 0 is smaller, it will be assigned 0. The result is then scaled back to retrieve the original

value.

Algorithm 6: Decryption
1. Start
2. Input values to decrypt (u,v)
3. Calculate noisy value
4. = v − u ∗
5. For each coefficient (i) of mn :
6. If –

2
 < | – | –

2
 < |0 | :

7. Then i =
2

8. Else:
9. Then i = 0

10. Calculate original value:
11. = ∗ 1

2

12. Return res
13. End

3.3 Experimental Design

The first step in conducting the experiment was to implement the algorithm based on

the formulated equations. Matrix and vector operations were managed using the NumPy

library. Once the implementation was completed, each stage of the algorithm was tested

to verify that it used the necessary modified and added parameters to consider the chan-

ge toward LWR (Alwen et al., 2013). The second step involved implementing a brute-force

attack method using reverse engineering as presented by NTT DATA (NTT DATA Perú,

2024).

The original Kyber algorithm and its RKyber variant were refactored and imple-

mented respectively in Python. The time in seconds required to generate both public and

private keys was recorded for dimensions (n) ranging from 2 to 13. Using this data, the

exponential function was applied to project values for larger dimensions, extending up

to 256, which is the official value for the original versions (Gonzalez, 2021). The execu-

tion times for each method of both algorithms were compared. Finally, it is worth noting

that the implementation of the original algorithm followed the official NIST documen-

tation for the competition (Avanzi et al., 2021), while the modification was based on the

work by Alwen et al. (2013). The algorithm was executed on a machine with the following

specifications: Core i5-11300H processor, 24GB RAM, Windows 11 operating system, and

GeForce RTX 3050 GPU.

Interfases n.o 20, diciembre 2024 175

Lattice-Based Cryptography: Development and Analysis of a New Variant of the Crystals-Kyber Algorithm

3.4 Variant Evaluation

Once the implementation of the variant was completed, we focused on comparing the

execution times for each part of the algorithm: key generation, encryption, and decryp-

tion. This evaluation involved executing each part of the algorithm 1000 times for both

the original Kyber algorithm and its variant. The primary objectives of the variant were

to improve computational resource efficiency compared to the original algorithm. The

decryption process necessarily required equations resulting in u and v. It was essential

to perform all calculations related to key generation and encryption. The public key takes

the form presented in Equation (9), which can be expressed as shown in Equation (23):

(23)

Where the elements of the matrices are generated based on X, with each element of

matrix A being a negacyclic matrix (Gonzalez, 2021). This expression applies to Kyber512,

where the coefficients of s
i
(X) are only restricted to {-3, -2, -1, 0, 1, 2, 3}. This range gene-

rates 7512 possibilities for the private key. In the case of Kyber768, it involves a 3x3

matrix A, and for Kyber1024, a 4x4 matrix A (Gonzalez, 2021). Considering that the error

vector is removed in the RKyber variant, and this vector dimension increases with each

Kyber version, the estimated security loss is proportional to the number of polynomials

removed. For RKyber512, the public key is calculated as presented in Equation (24):

(24)

Given the numerous private key possibilities, the corresponding public key becomes

unfathomably large. In a reduced example, where values are divided into two polynomials

for the key s, the number of possibilities was calculated to be 76. In this same example,

the remaining polynomials would need to be assigned to matrix A, requiring 7500 calcu-

lations. This results in a total of 7512 calculations. Based on this estimate, the projected

security loss for RKyber512 is 1.17 %. For RKyber768 and RKyber1024, the estimated loss

is 0.7 % and 0.5 %, respectively, assuming that the security loss is directly proportional to

the number of removed polynomial operations.

The time required to break the encryption was estimated using reverse engineering

and regression analysis. Following NTT researchers (NTT DATA Perú, 2024), this reverse

engineering approach minimizes all the possible variables in the key generation method.

The number of possible values was reduced from 76 to 36 by using only the values {-1,

0, 1}. In this method, matrix A is known, so only the private key s, divided into s1 and s2,

needs to be addressed. Moreover, the parameters p and q are known, as they are defined

at the start of the execution. The results are derived as presented in Equation (25):

Interfases n.o 20, diciembre 2024176

M. S. Cisneros, J. E. Olazabal, H.Nina

(25)

In the original algorithm, error vectors were included in the key generation process,

resulting in 36 possibilities (Avanzi et al., 2021). However, since this variant removes the

error vector, the number of possibilities is further reduced to 34.

4 RESULTS

4.1 Analysis Results

Starting with the original CRYSTALS-Kyber algorithm, the first method involves gene-

rating the matrix A, the private key s, the error vector e, and calculating the public key

t. Since generating matrix A is the most complex operation in terms of time and space,

it dictates the complexity of the key generation method, with a time complexity of O(n²)

and a space complexity of O (n² log q). Here, q refers to the space in which the polynomial

coefficients are generated. The second method, encryption, generates vector r and the

pair of encrypted message values u and v. The space complexity for this method is O (n

log q), while the time complexity is O(n²), again generated in space q. Finally, the decryp-

tion method runs in O (log q) space and O(n) time, as reversing the message is relatively

simpler to store and execute.

In the RKyber variant, no error vector e is generated. Instead, it works with an addi-

tional parameter p, which creates a “deterministic error” in place of the pseudo-random

error seen in LWE. The first key generation method runs with O (n² log q) space and

O(n²) time. However, in this case, the public key is generated within space p rather than

q, as seen in Equation (18). The second encryption method has the same time and space

complexity as its LWE counterpart, with O (n log q) for space and O(n²) for time. The main

difference lies in how the vectors u and v are generated in space p rather than q. Finally,

the decryption method runs in O (log p) space and O(n) time.

4.2 Experimental Results

4.2.1 Execution Time Tests

The results from the experiment consist of the execution times for each part of both

algorithms, averaged over 1 000 runs per stage. The Kyber algorithm has three versions

in terms of security: Kyber512 (lower security, faster), Kyber768, and Kyber1024 (higher

Interfases n.o 20, diciembre 2024 177

Lattice-Based Cryptography: Development and Analysis of a New Variant of the Crystals-Kyber Algorithm

security, more time-consuming). The following tables show the execution times for both

the original algorithm and the RKyber variant across Kyber512, Kyber768, and Kyber1024.

Table 2

Execution Times in Milliseconds for RKyber512 and Kyber512

RKyber 512 Kyber512

Time per Stage
(in ms)

Keygen Encryption Decryption Keygen Encryption Decryption

Maximum 12.002 27.526 46.002 17.010 22.002 55.999

Minimum 3.997 7.945 14.225 4.032 7.998 14.612

Median 5.430 9.420 16.181 5.611 9.723 16.658

Standard
Deviation

0.804 1.068 1.887
0.881 1.197 2.039

Total 5.43 9.42 16.18 5.6 9.72 16.65

Table 3

Execution Times in Milliseconds for RKyber768 and Kyber768

RKyber768 Kyber768

Time per Stage
(in ms)

Keygen Encryption Decryption Keygen Encryption Decryption

Maximum 35.675 51.999 72.510 45.556 41.000 88.998

Minimum 7.600 12.618 21.409 7.996 12.998 21.868

Median 9.251 14.586 24.153 9.619 15.051 24.957

Standard Deviation 1.531 2.558 3.598 2.014 1.874 3.598

Total 9.25 14.58 24.15 9.61 15.05 25.12

Table 4

Execution Times in Milliseconds for RKyber1024 and Kyber1024

RKyber1024 Kyber1024

Time per Stage (in
ms) Keygen Encryption Decryption Keygen Encryption Decryption

Maximum 43.998 83.237 113.001 70.714 94.000 125.999

Minimum 12.533 19.023 31.160 11.997 18.204 29.708

Median 14.759 21.884 35.271 14.665 21.739 34.774

Standard Deviation 1.872 3.695 5.064 4.166 5.574 7.521

Total 14.664 21.73 34.77 14.75 21.88 36.27

These results show that RKyber achieves slightly faster execution times than the

original Kyber algorithm. As the algorithm’s complexity increases with the security level

(from Kyber512 to Kyber1024), the differences in execution times become more apparent.

Interfases n.o 20, diciembre 2024178

M. S. Cisneros, J. E. Olazabal, H.Nina

To model these results, parameters n (degree of polynomials), k (number of polynomials),

and N (possible range of coefficient values) were used (NTT DATA Perú, 2024).

4.2.2 BRUTE-FORCE ATTACK TESTS

This section presents brute-force security tests conducted for each algorithm. These

tests involved incrementally increasing the polynomial dimensions from the lowest to

the highest possible values to project the time required to break these algorithms using

brute force. The results are shown in Table 5 and Figures 3 and 4.

Table 5

Brute-Force Attack Times for RKyber512 and Kyber512

n Kyber RKyber

2 0.000529162 0.000525681

3 0.001454904 0.001440572

4 0.004000182 0.003947727

5 0.010998292 0.010818309

6 0.030239226 0.029646378

7 0.083141166 0.081242618

8 0.228592276 0.222636403

9 0.628502473 0.610110424

10 1.728034584 1.671940092

11 4.751140451 4.581766782

12 13.06301146 12.55582478

13 35.91606484 34.40784821

Using the results from the attack executions, the exponential function that fits the

attack times can be determined. This allows for the estimation of approximate values for

N = 256, which is the standard value used in these algorithms.

Interfases n.o 20, diciembre 2024 179

Lattice-Based Cryptography: Development and Analysis of a New Variant of the Crystals-Kyber Algorithm

Figure 3

Brute-Force Attack on Kyber512

Figure 4

Brute-Force Attack on RKyber512

These results demonstrate that RKyber is slightly easier to break using brute-

force attacks, but the difference is negligible. For example, with N = 30, the estimated

execution time to break RKyber is approximately 12 years. With N = 256, the attack would

take an incalculable amount of time using current technology, meaning that the variant

remains secure. In summary, RKyber offers computational advantages in execution time

without significantly compromising security, making it a viable alternative to the original

algorithm in environments where speed is critical and extreme security is not required.

Interfases n.o 20, diciembre 2024180

M. S. Cisneros, J. E. Olazabal, H.Nina

5. DISCUSSION

As seen in the results from Tables 2, 3, and 4, the execution times for the RKyber variant

are shorter than those for the original Kyber algorithm. This improvement occurs becau-

se, in RKyber, errors are no longer generated randomly; instead, they are converted

into deterministic values, simplifying the algorithm’s execution and computation. At first

glance, the time difference may not seem significant. However, it is important to consider

that these are cumulative results over 1000 executions, where a difference of just 1 ms

per execution can add up substantially. On the other hand, the trade-off for this improve-

ment in execution time is a reduction in security. The original Kyber algorithm introduced

random noise, including an additional security layer by making it more difficult for

attackers to reverse-engineer the encryption. In RKyber, this noise has been removed,

making it theoretically more vulnerable. However, it should be emphasized that RKyber

remains resistant to quantum attacks, as the underlying lattice is unchanged, meaning

an attacker would still need to find the correct polynomial to decrypt the message. So

far, no practical attack has fully compromised Kyber’s security. The only known attack,

KyberSlash (Bernstein, 2024), assumes direct access to the processor where the system

is running, making it incredibly difficult to execute. Dr. Daniel Bernstein has tracked this

attack and reported that the original implementation has already been patched to miti-

gate this threat.

In terms of complexity, the biggest difference between the two algorithms lies in

the space used in the generations. The LWE-based version of Kyber primarily uses q

space, whereas the RKyber variant uses p space (Alwen et al., 2013). However, the overall

complexity remains the same, as p is always smaller than q, making this difference negli-

gible in terms of asymptotic bounds.

Originally, this study aimed to simulate an attack using Shor’s quantum algorithm,

since it efficiently breaks current public-key schemes. However, it became clear that

such attacks are not feasible, at least at the time of writing this report. The reason is the

way Shor’s algorithm inputs and outputs data. In this case, the input should be a number,

and the output should be its prime factors. Given that the fundamental bases of lattices

are polynomials stored in vectors, factoring them in this way is not possible. A more

appropriate solution would involve using Grover’s algorithm to optimize coefficient gene-

ration, though this was not tested in this research. Using Grover’s algorithm along with

the reverse-engineering method could be a potential solution.

To estimate the time needed to break the algorithm, a statistical analysis was

conducted based on the time (in seconds) recorded during key generation across multiple

experiments. A simple statistical model was built using the input parameters n, k, and N

(Gonzalez, 2021). This model allowed for the projection of breaking times for different

configurations.

Interfases n.o 20, diciembre 2024 181

Lattice-Based Cryptography: Development and Analysis of a New Variant of the Crystals-Kyber Algorithm

6. CONCLUSIONS

This paper introduces a new perspective on the CRYSTALS-Kyber algorithm by modifying

the core problem it addresses and extending it to the LWR problem. The resulting variant,

named RKyber, significantly improves execution times at the cost of a slight reduction

in security. The primary objective of this work was to transition from LWE to LWR and

test the modified algorithm. The change inherently compromises security by removing

the pseudo-random obfuscation method used in LWE encryption systems, resulting in a

trade-off between efficiency and security. However, the reduction in security does not

render the algorithm unusable.

Many systems do not require extremely high levels of security, and as discussed

in Section 5, the security loss is minimal. The time needed to break RKyber using brute-

force attacks remains prohibitive with current technology, ensuring that the variant is

still resistant to quantum attacks. Furthermore, RKyber’s improvements in execution

time could be advantageous in environments where resource efficiency is a priority.

The transition from LWE to LWR supports the hypothesis that both pseudo-random and

deterministic errors are computationally congruent. Alwen et al. (2013) suggest that the

decryption step, where the error is handled, is the most computationally demanding part

of the system. By removing the need to deal with LWE’s pseudo-random error, the algo-

rithm becomes more efficient without significantly compromising security. This holds

true for all versions of Kyber (512, 768, 1024), where the only significant changes are the

parameters involved in the key generation, encryption, and decryption processes.

REFERENCES

Aaronson, S., & Chen, L. (2017). Complexity-theoretic foundations of quantum supremacy

experiments. Proceedings of the 32nd Computational Complexity Conference

(CCC’17), Dagstuhl, Germany, Article 22, 1–67. https://doi.org/10.48550/

arXiv.1612.05903

Alwen, J., Krenn, S., Pietrzak, K., & Wichs, D. (2013). Learning with rounding, revisited.

In R. Canetti, & J. A. Garay (Eds.), Lecture Notes in Computer Science: Vol.

8042. Advances in Cryptology – CRYPTO 2013 (pp. 57–74). Springer. https://doi.

org/10.1007/978-3-642-40041-4_4

Avanzi, R., Bos, J., Ducas, L., Kiltz, E., Lepoint, T., Lyubashevsky, V., Schanck, J. M., Schwabe,

P., Seiler, G., & Stehlé, D. (2021). CRYSTALS-Kyber: Algorithm specifications and

supporting documentation (version 3.01). https://pq-crystals.org/kyber/data/

kyber-specification-round3-20210131.pdf

Benioff, P. (1980). The computer as a physical system: A microscopic quantum mechanical

Hamiltonian model of computers as represented by Turing machines. Journal of

Statistical Physics, 22, 563–591. https://doi.org/10.1007/bf01011339

Interfases n.o 20, diciembre 2024182

M. S. Cisneros, J. E. Olazabal, H.Nina

Bernstein, D. J. (2024, June 28). KyberSlash: division timings depending on secrets in Kyber

software. FAQ. https://kyberslash.cr.yp.to/faq.html

Gonzalez, R. (2021, September 14). Kyber - How does it work? Approachable Cryptography.

https://cryptopedia.dev/posts/kyber/

Grover, L.K. (1996). A fast quantum mechanical algorithm for database search. Bell Labs.

https://doi.org/10.1145/237814.237866

Lyubashevsky, V., Peikert, C., & Regev, O. (2010). On ideal lattices and learning with

errors over rings. In H. Gilbert (Ed.), Lecture Notes in Computer Science: Vol.

6110. Advances in Cryptology – EUROCRYPT 2010 (pp. 1–23). Springer. https://doi.

org/10.1007/978-3-642-13190-5_1

Micciancio, D., & Goldwasser, S. (2002). Complexity of lattice problems: A cryptographic

perspective. Springer. https://ci.nii.ac.jp/ncid/BB14507293

Mor, T., & Renner, R. (2014). Preface. Natural Computing, 13(4), 447–452. https://doi.

org/10.1007/s11047-014-9464-3

NTT DATA Perú. (2024, April 17). Algoritmos post-cuánticos: criptografía y ciberseguridad

en la era cuántica. NTT DATA Perú. https://pe.nttdata.com/documents/paper_

crystals_kyber_ntt_data.pdf

Peikert, C. (2016). A decade of lattice cryptography. Foundations and Trends in Theoretical

Computer Science, 10 (4), 283–424. https://doi.org/10.1561/0400000074

Regev, O. (2005). On lattices, learning with errors, random linear codes, and cryptography.

Proceedings of the thirty-seventh annual ACM symposium on Theory of computing

(STOC ‘05), New York, NY, USA, 84–93. https://doi.org/10.1145/1060590.1060603

Shor, P. W. (1997). Polynomial-time algorithms for prime factorization and discrete

logarithms on a quantum computer. SIAM Journal on Computing, 26(5), 1484–

1509. https://doi.org/10.1137/s0097539795293172

Wei, Y., Bi, L., Lu, X., & Wang, K. (2023). Security estimation of LWE via BKW algorithms.

Cybersecurity, 6, Article 24. https://doi.org/10.1186/s42400-023-00158-9

