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ABSTRACT. With the increasing popularity of cell phone use, the risk of malware infec-

tions on such devices has increased, resulting in financial losses for both individuals 

and organizations. Current research focuses on the application of machine learning 

for the detection and classification of these malware programs. Accordingly, the pres-

ent work uses the frequency of system calls to detect and classify malware using the 

XGBoost, LightGBM and random forest algorithms. The highest results were obtained 

with the LightGBM algorithm, achieving 94,1  % precision and 93,9  % accuracy, recall, 

and F1-score, demonstrating the effectiveness of both machine learning and dynamic 

malware analysis in mitigating security threats on mobile devices.
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ANÁLISIS DINÁMICO DE MALWARE MEDIANTE ALGORITMOS DE DETECCIÓN BASADOS 
EN MACHINE LEARNING

RESUMEN. Con la creciente popularidad del uso de teléfonos celulares, el riesgo de 

infecciones por malware en dichos dispositivos ha aumentado, lo que genera pérdidas 

financieras tanto para individuos como para organizaciones. Las investigaciones 

actuales se centran en la aplicación del aprendizaje automático para la detección y 

clasificación de estos programas malignos. Debido a esto el presente trabajo utiliza 
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la frecuencia de llamadas al sistema para detectar y clasificar malware utilizando 

los algoritmos XGBoost, LightGBM y random forest. Los resultados más altos se 

obtuvieron con el algoritmo de LightGBM, logrando un 94.1% de precisión y 93.9% 

tanto para exactitud, recall y f1-score, lo que demuestra la efectividad tanto del uso 

del aprendizaje automático como del uso de comportamientos dinámicos del malware 

para la mitigación de amenazas de seguridad en dispositivos móviles.

PALABRAS CLAVE: malware / machine learning / detección
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1. INTRODUCTION

According to the FortiGuard Labs threat report (Fortinet, 2022) for Latin America and 

the Caribbean, cyberattack attempts surged by 600 % in 2021 compared to 2020, consti-

tuting 10 % of the total global attempts. FortiGuard Labs, Fortinet’s threat intelligence 

laboratory, also noted that Peru was the third most targeted country, with 11,5 billion 

attack attempts, following Mexico and Brazil.

Duo et al. (2022) argue that cyberattacks pose security challenges in cyber systems, 

potentially affecting system performance or causing additional damages. These attacks 

can take various forms, including denial of service, phishing, or malware.

Several authors (Saravia et al., 2019, as cited in Ashik et al., 2021) define malware as 

malicious software embedded in lawful programs to perform criminal activities. With the 

rapid spread of the Internet and the proliferation of connected devices, malware attacks 

have increased significantly, jeopardizing user privacy.

Regarding the causes of malware infections, Ashik et al. (2021) point out that these 

are primarily due to the download of free software such as games, web browsers, or free 

antivirus programs. Three common methods by which malware can infiltrate a device 

are highlighted: download attack, where malware is hosted on a web server to infect 

devices visiting the page; update attack, which modifies a benign application to include 

malware characteristics; and repackaging attack, where malware is embedded in a 

benign application (Felt et al., 2014, as cited in Surendran & Thomas, 2022).

Current research focuses on enhancing malware detection through machine 

learning algorithms. For instance, Mahindru and Sangal (2020) developed a framework 

to safeguard Android devices using a dataset containing benign and malicious samples 

of Android Package Kit (APK) files collected from sources including Google Play Store, 

Android, Panda.App, among others. They employed a feature selection approach, 

extracting specific application features (permissions, system calls, number of app down-

loads, and app ratings) for model training using various machine learning algorithms 

such as logistic regression, support vector machines (SVM), or random forest (RF), to 

compare them with existing models trained on all APK file characteristics. They found 

that models employing a feature selection approach outperformed those using the entire 

set of extracted features.

The selection of dataset features to be used as input for machine learning models 

is also crucial, as noted by Wu et al. (2021). Their study focused on devising why an 

application is classified as malware by machine learning algorithms, using application 

programming interface (API) calls and permissions from APK files. The dataset collected 

by the authors consisted of 20 120 benign applications and 15 570 malicious apps. They 

found that these two characteristics alone are insufficient to fully explain malware 

behavior.
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Surendran and Thomas (2022) proposed a novel malware detection system in 

Android using graph centrality measures composed of system calls from APK appli-

cations. The RF algorithm exhibited the highest performance, with 0,98 accuracy for 

detecting obfuscated malware. Additionally, they suggested further research to reduce 

false positive rate (when an application is incorrectly classified as malware).

For this study, a data science approach will be adopted, utilizing the RF, XGBoost, 

and LightGBM algorithms, which have been employed in recent research. Louk and Tama 

(2022) applied these algorithms to efficiently detect malware, achieving precision and 

accuracy above 99,2 % for all three algorithms.

Based on the algorithms currently used in the field of data science, the goal of our 

present study is to evaluate the effectiveness of machine learning algorithms such as 

RF, LightGBM, or XGBoost on the CICMalDroid 2020 dataset, which utilizes dynamically 

observed malware behaviors (actions performed by malware while in execution) to iden-

tify the most suitable model for preventing malware cyberattacks.

This article is organized as follows: Section 2 presents a survey of experimental 

studies on major malware detection techniques and machine learning algorithms to 

be trained for malware detection scenarios. Section 3 discusses the methodology and 

describes the dataset employed. Section 4 presents the experimentation, followed by 

the results in Section 5. Section 6 provides discussions and finally Section 7 presents the 

conclusions and future works.

2. BACKGROUND

There are two main techniques for analyzing malware: static and dynamic analysis. The 

former involves analyzing malware without executing it (Alosefer Y., 2012, as cited in 

Aslan & Samet, 2020), while the latter involves analyzing malware as it runs in a real or 

virtual environment (Bhat & Dutta, 2019, as cited in Liu et al., 2020). For the present study, 

malware execution will not be performed directly; instead, a dataset where dynamic 

analysis was previously conducted will be employed. 

2.1 Dynamic Analysis

Surendran et al. (2020) claim that to detect malicious activity, dynamic analysis predom-

inantly considers data originating from the running application, including system call 

traces and sensitive API calls. It is worth noting that system calls contain more relevant 

information about malware behavior compared to API calls, as misclassifications can 

occur when a benign application invokes API calls frequently used in malicious appli-

cations. The authors conclude that certain types of legitimate applications, such as face 

detection or weather prediction apps, request more system privileges during execution. 

In such cases, these benign apps may generate system calls that resemble those found 
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in malware apps, potentially causing these goodware apps to be mistakenly flagged as 

malware. To reduce these false positives, the authors suggest future research should 

consider both the timing and frequency of malicious system calls in an application.

Feng et al. (2018) highlight that system calls indicate how applications request 

services from the operating system to perform important functions such as power 

management, device security, and hardware resource access, among others. However, 

they can also be used for malicious purposes; the authors note that malware tends to 

use more system calls than benign applications. Examples of such system calls include 

syscall operations like “fork,” “fchmod,” and “wait4,” which indicate changes in file 

ownership containing sensitive information or the creation of child processes to perform 

hidden malicious behavior. The authors conclude that despite the effectiveness of their 

dynamic analysis framework called EnDroid, which extracts system-level behavior 

traces and common application-level malicious behaviors, it is necessary to improve the 

coverage of the dynamic analysis for future research.

Surendran and Thomas (2022) focused on tracking system calls to detect malicious 

activity in applications, noting that malware applications automatically invoke sensitive 

APIs (such as making calls) to execute privileged actions like collecting information from 

contacts. For their research, they first gathered system call traces and organized them 

into an ordered graph where system calls are vertices and their edges represent adja-

cency relations. This ordered graph enables the extraction of central values from the 

system call graph, such as “rename” and “open” system calls, using centrality measure-

ments like eigenvector, betweenness, and closeness. The authors concluded that their 

proposed system outperforms existing malware detection mechanisms based on system 

calls with an accuracy of 0,99. However, they noted the necessity of using new tools for 

collecting system calls from malware applications. Due to the mechanism employed by 

the authors, some malware apps did not exhibit malicious behavior during the collection 

of syscall traces because of the limited code coverage problem in automated test case 

generation tools like monkeyrunner.

As a result of the review, some gaps were identified like the necessity of using 

new tools for collecting system calls, improving the coverage of dynamic analysis, 

and considering the frequency of occurrence of system calls when analyzing malware 

applications. Therefore, in this article, we will use a dataset that includes the number 

of occurrences of dynamic malware behaviors and has been processed with a tool that 

adequately reconstructs them.

2.2 Supervised Machine Learning Techniques for Malware Detection

Several authors have employed machine learning algorithms to detect malware, utiliz-

ing feature extraction from various datasets. The most relevant works reviewed are 

mentioned below.
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Aebersold et al. (2016) used RF and SVM algorithms on three different datasets: 

the first consisting of the complete list of JavaScript samples available on jsDelivr (a 

content delivery network for open-source projects), the second including the Top 500 

Alexa websites (a page collecting information from websites), and the third consisting of 

a set of malicious JavaScript samples gathered from the Swiss Reporting and Analysis 

Centre for Information Assurance (MELANI). All precision scores were above 99 %. The 

authors concluded that a more representative dataset is needed to perform malware 

detection because the dataset of malicious scripts they used was much smaller than the 

dataset of benign scripts, making it unclear whether the classifier is capturing the actual 

syntactic characteristics correlated with the malicious behavior.

Chen et al. (2018) also used RF and SVM, as well as k-nearest neighbors (KNN), 

and applied them to a dataset they collected. The authors focused on two metrics, false 

negatives, and accuracy, concluding that the best algorithm was RF with an accuracy 

of 96,35 % and a false negative rate of 2,50 % (the lowest among the three algorithms 

applied). 

Another example of using RF and SVM algorithms is provided by Kim et al. (2018), 

who collected macro applications in Excel and Word, then extracted 15 characteristics 

from them, such as the number of characters in the code (excluding comments) and 

average word length. The models employed ranged from SVM, multi-layer perceptron 

(MLP), or RF, resulting in relatively good performance. RF achieved a precision of 98,2 %, 

SVM achieved 88,1 %, and MLP achieved 93,8 % in the same metric.

Choudhary and Sharma (2020) also applied these machine learning algorithms—

using datasets from other authors to evaluate malware detection with KNN, SVM, 

decision tree, and MLP—obtaining accuracies higher than 87 %, 89 %, 92 %, and 90 %, 

respectively. They concluded that machine learning algorithms have greater potential 

for malware detection compared to traditional techniques employed by current antivirus 

software (signature analysis).

Current research reflects the use of new machine learning algorithms for both 

detection and classification compared to past research. Chen et al. (2021) used the 

LightGBM algorithm on the Drebin dataset, using the frequency of API calls made 

by APK files within the dataset and achieved an accuracy of 99,54 %. Other works 

that used LightGBM include those by Gao et al. (2022), Onoja et al. (2022), and Chen 

et al. (2023).

New algorithms were also employed by Urooj et al. (2022), who collected 

56 000 features from 100 000 Android applications using static analysis. For feature 

extraction, they used Androguard and performed feature selection to reduce the 

number of features, then input them into machine learning models such as KNN, 

naive Bayes (NB), radial basis function (RBF), decision tree, SVM, and AdaBoost 
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with decision trees. They achieved an accuracy of 96,26 % with the AdaBoost model 

and a false positive rate of 0,3 %. The authors concluded that ensemble and strong 

learner algorithms perform comparatively better when dealing with classifications 

and high-dimensional data. They also highlighted that their research approach 

was restricted in terms of static analysis, thus it is important to use a dataset with 

dynamic features for future research.

Şahın et al. (2022) used algorithms such as KNN, NB, RBF, decision tree, SVM, and 

linear methods like Linear Regression, obtaining the best result from the combination 

of SVM and decision trees, with an F-measure of 96,95  % for the AMD dataset. They 

concluded that the application of popular classification algorithms positively benefits 

malware classification. However, they noted that their static analysis approach used APK 

permissions as features, emphasizing the need to expand the research using dynamic 

behaviors of malware.

Palsa et al. (2022) used the XGBoost algorithm to detect malware in a dataset 

they collected through VirusShare, achieving 96,54 % accuracy using dynamic analysis 

features. Other authors who used the XGBoost algorithm include Dhamija and Dhamija 

(2021) and Kumar and Geetha (2020), who efficiently detected and classified malware 

with this novel algorithm. They concluded that the use of machine learning algorithms 

potentially benefits the detection of malicious software.

Finally, Louk and Tama (2022) applied RF, XGBoost, CatBoost, gradient boosting 

machine (GBM), and LightGBM algorithms to three different datasets containing features 

of malware that could be run portably (portable executable [PE] files) on Windows, 

obtaining precision and accuracy results above 99,2 % for both metrics. They concluded 

that the algorithms that performed best are those based on decision trees, with perfor-

mance differences between algorithms being not statistically significant.

As a result of the literature review on machine learning models used for malware 

detection, it is evident that the most recent studies indicate the need to expand research 

using dynamic behaviors. It is also noted that the best-performance algorithms are 

those using decision trees (including RF), XGBoost, and LightGBM (a variation of gradient 

boosting to make it more efficient). This research will therefore experiment with these 

three models.

3. METHODOLOGY

This research proposes a methodology based on comparing machine learning algo-

rithms applied to the detection and classification of malware families, specifically RF, 

LightGBM, and XGBoost. These algorithms will be applied to the CICMalDroid 2020 data-

set, as described in the Experimentation section. Figure 1 presents the block diagram 

outlining the activities to be carried out in the experimentation.
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Figure 1

General Overview of the Proposed Approach
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Below is a brief explanation of the methodology:

1. Acquisition of Dataset With System Call Frequencies

 The chosen dataset for this research was CICMalDroid  2020—developed by 

Mahdavifar et al. (2020)—which contains the elements outlined in Table 1. It is 

important to emphasize that this research will only use the ‘feature_vectors_

syscallsbinders_frequency_5_Cat.csv’ file. This dataset was generated through 

dynamic analysis using the CopperDroid tool, a system based on virtual machine 

introspection (VMI) that automatically reconstructs specific low-level Android beha-

viors and specific operating system activities from Android samples. According to 

the authors, out of 17 341 Android samples, only 13 077 executed successfully while 

the remainder failed due to issues such as timeouts, invalid APK files, and memory 

allocation difficulties. Additionally, 12  % of the JSON files (CopperDroid output 

results in this format) from the successful executions were not uploaded to the 

Canadian Institute for Cybersecurity website—where the CICMalDroid 2020 dataset 

is stored—due to “unfinished strings” (records that should be in double quotes but 

lack a closing quote).

2. Feature Engineering

 An exploratory data analysis was performed to ensure that the dataset does not 

contain null values. Given that the dataset is imbalanced, undersampling will be 

employed to balance the number of records. The most relevant features will be 

selected using the RF algorithm to determine the relative importance of each feature 

in predicting the target. The final dataset will be standardized to equalize the scales 

of the numbers before being used in the model building process.

3. Application of Machine Learning Models (XGBoost, LightGBM, RF)

 Cross-validation with grid search will be employed to select the best hyperparame-

ters for the machine learning models. Subsequently, the models will be executed 

using k-folds cross-validation, and metrics such as accuracy, precision, and 

F1-score will be obtained for each model, in addition to the confusion matrix.
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4. Results Analysis

 For the analysis of the results, precision and recall metrics will be employed as 

they are effective to compare multi-class datasets. The results obtained will be 

compared with previous research that used the same dataset or datasets that 

included only system call frequencies. Possible reasons for differences in results 

will be discussed.

4. EXPERIMENTATION

4.1 Description of the Dataset Employed in the Experimentation Section

The components of the CICMalDroid 2020 dataset are described in Table 1.

Table 1

Description of the Components of the CICMalDroid 2020 Dataset

Component Description

APK Files
17 341 Android samples categorized into five groups: riskware, bank-
ing malware, benign samples, SMS malware, and adware.

Capturing Logs
13 077 samples were analyzed and the results were categorized into 
five groups: riskware, banking malware, SMS malware, adware, and 
benign samples.

Comma-Separated 
Values (CSV) Files

‘feature_vectors_syscallsbinders_frequency_5_Cat.csv’:
1. Contains 470 characteristics, including binders, composite behaviors, 

and system call frequencies, retrieved from 11 598 APK files.
2. Contains 139 features, including system call frequencies, retrieved 

from 11 598 APK files.
3. Contains 50 621 features retrieved from 11 598 APK files, including 

static data such as sensitive APIs, files, method tags, intent actions, 
permissions, packages, and receivers.

Note. These components and their descriptions were derived from research by Mahdavifar et al. (2020). 
The CSV files and dataset components were downloaded from the Canadian Institute for Cybersecurity 
website1. The ‘.csv’ file that will be used for the creation of machine learning models in the Experimentation 
section is ‘feature_vectors_syscallsbinders_frequency_5_Cat.csv’2. The file contains 470 dynamically 
observed behaviors and their frequencies of occurrence during dynamic application analysis. The content 
of the extracted ‘.csv’ file is presented in Table 2, and the descriptions of the observed columns are 
presented in Table 3.

1 https://www.unb.ca/cic/datasets/maldroid-2020.html
2 https://drive.google.com/file/d/1CuLCATUoxK42LsJhFkV1Vk85Wi7vFXGc/view?usp=sharing
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Table 2

Visualization of the First Five System Calls From the First Five Records Contained in the ‘feature_
vectors_syscallsbinders_frequency_5_Cat.csv’ File With Their Respective Frequencies

ACCESS_PER-
SONAL_INFO___

ALTER_PHONE_
STATE___

ANTI_DE-
BUG_____

CREATE_FOLD-
ER_____

CREATE_PRO-
CESS`_____

1 0 0 3 0

3 0 0 6 0

2 0 0 4 0

1 0 0 4 0

3 0 0 11 0

Table 3

Description of the First Row in Table 2

System Call Name Description

ACCESS_PERSONAL_INFO___ Permits access to personal information

ALTER_PHONE_STATE___ Modifies the phone’s state variable

ANTI_DEBUG_____ Protects against debugging techniques

CREATE_FOLDER_____ Creates a folder or directory

CREATE_PROCESS`_____ Creates a new process

4.2 Feature Engineering

The Google Colab programming environment was used, with Python as the program-

ming language. For the removal of the most representative outliers, the PyOD library (a 

Python library for detecting outlier objects in multivariate datasets) was employed, utiliz-

ing the KNN class for outlier detection. According to the documentation of the PyOD KNN 

model, the distance to the nearest neighbor of an observation can be viewed as its outly-

ing score. The model also includes a parameter called contamination, which represents 

the proportion of outliers in the dataset. For the purposes of this study, the contamination 

value of 0,02 was selected.

Subsequently, class balancing was performed using the imblearn library with the 

undersampling method. Figure 2 shows the comparison of the number of records in the 

original dataset and after processing with the PyOD library and class balancing with the 

imblearn library.
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Figure 2

Comparison of the Number of Samples in the Original Dataset Versus the Processed Dataset 
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Finally, variable selection based on importance was conducted using the 

SelectFromModel3 library and the RF algorithm. This technique involves identifying the 

most relevant features in a dataset by assessing their importance scores. These scores 

are determined by the RF model, which evaluates how much each feature contributes to 

increasing or reducing impurity across all the trees in the forest.

To achieve this, various threshold values were tested to evaluate the models and 

compare accuracy metrics. The threshold corresponding to the best result in Table 4 

was selected.

Table 4

Experimentation Carried Out With Different Thresholds to Determine Which Value to Choose

Threshold Number of Features Accuracy

0,001  153  0,9204

0,002 127 0,9241

0,003 107 0,9216

0,004 89 0,9253

0,005 75 0,9192

0,006 62 0,9204

0,007 54 0,9228

3 https://scikit-learn.org/stable/modules/feature_selection.html#select-from-model

(continues)
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Threshold Number of Features Accuracy

0,008 49 0,9155

0,009 42 0,9228

0,01 34 0,9216

Since the threshold yielding the highest accuracy result is 0,004 (corresponding to 

an accuracy of 0,9253), a selection will be made of the 89 attributes whose importance 

values exceed the selected threshold.

5. Results 

5.1 Training and Test Samples

Training with the machine learning models will use 80 % of the records, while the remain-

ing 20 % will be allocated for testing purposes. Figure 3 illustrates the distribution of 

training and testing records for each category.

Figure 3

Comparison of the Number of  Training and Testing Records
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5.2 Machine Learning Models

Table 5 presents the results obtained for each algorithm, including their standard devi-

ation across folds.

(continued)



Interfases n.o 19, julio 2024 131

Dynamic Malware Analysis Using Machine Learning-Based Detection Algorithms

Table 5

Comparative Table of Precision, Recall, Accuracy, and F1-Score Results for Machine Learning 
Algorithms With Standard Deviation Across Folds

Algorithms Accuracy Precision Recall F1-Score

Random Forest 0,9356 ± 0,0140 0,9379 ± 0,0129 0,9356 ± 0,0140 0,9358 ± 0,0139

XGBoost 0,9349 ± 0,0118 0,9362 ± 0,0111 0,9349 ± 0,0118 0,9350 ± 0,0116

Light GBM 0,9395 ± 0,0105 0,9410 ± 0,0102 0,9395 ± 0,0105 0,9396 ± 0,0105

The data within Table 5 presents the precision, recall, accuracy, and F1-score 

outcomes achieved by three distinct machine learning algorithms: RF, XGBoost, and Light 

GBM. Despite relatively minor differences, Light GBM emerged as the top performer, 

attaining the highest accuracy of 0,9395 ± 0,0105, the highest precision score of 0,9410 ± 

0,0102, and the highest recall rate of 0,9395 ± 0,0105. XGBoost followed closely with the 

second highest accuracy of 0,9349 ± 0,0118, the second best precision score of 0,9362 

± 0,0111, and the second best recall rate of 0,9349 ± 0,0118. RF trailed slightly behind, 

achieving an accuracy of 0,9356 ± 0,0140, a precision score of 0,9379 ± 0,0129, and a 

recall rate of 0,9356 ± 0,0140, which was the lowest among the three algorithms.

Figure 4

Confusion Matrix of the RF Algorithm After Applying Stratified K-Fold Cross-Validation (10 Folds)

Confusion Matrix
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Or the Benign Apps class, the model achieved an excellent accuracy by correctly 

identifying 763 instances. However, it misclassified 6 instances as riskware, 4 as SMS 

malware, 11 as banking malware, and 33 as adware.
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In the riskware class, the model accurately predicted 762 instances but misclassi-

fied 19 as benign apps, 10 as SMS malware, 5 as banking malware, and 21 as adware. 

The model exhibited high accuracy for the SMS malware class, correctly classifying 

803 instances. Misclassifications were minimal, with 2 instances classified as benign 

apps, 4 as riskware, and 8 as adware.

For banking malware class, the model correctly predicted 734 instances but 

misclassified 32 instances as benign apps, 11 as riskware, 4 as SMS malware, and 36 as 

adware.

Finally, the Adware class achieved high accuracy with 760 instances correctly clas-

sified. Misclassifications were relatively low, with 25 instances classified as benign apps, 

8 as riskware, 14 as SMS malware, and 10 as banking malware.

Figure 5

Confusion Matrix of the XGBoost Algorithm After Applying Stratified K-Fold Cross-Validation 
(10 Folds)
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As shown in Figure 5, for the benign apps class, the model correctly identified 761 

instances but misclassified 6 as riskware, 4 as SMS malware, 18 as banking malware, 

and 28 as adware.

In the riskware class, 758 instances were accurately predicted, while 20 were 

misclassified as benign apps, 10 as sms malware, 8 as banking malware, and 21 as 

adware.

The model exhibited a high accuracy for the SMS malware class, correctly classi-

fying 799 instances, with relatively low misclassifications: 10 as riskware, 1 as banking 

malware, and 7 as adware.
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For the banking malware class, 747 instances were accurately predicted, but 30 

were misclassified as benign apps, 11 as riskware, 5 as SMS malware, and 24 as adware.

Finally, the adware class achieved high accuracy with 754 instances correctly clas-

sified. Misclassifications were relatively low: 24 as benign apps, 8 as riskware, 16 as SMS 

malware, and 15 as banking malware.

Figure 6

Confusion Matrix of the LightGBM Algorithm After Applying Stratified K-Fold Cross-Validation 
(10 Folds)
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As illustrated in Figure 6, for the benign apps class, the model correctly identi-

fied 765 instances but misclassified 6 as riskware, 3 as SMS malware, 16 as banking 

malware, and 27 as adware.

In the riskware class, 767 instances were accurately predicted, while 19 were 

misclassified as benign apps, 5 as SMS malware, 7 as banking malware, and 19 as 

adware.

The model exhibited high accuracy for the SMS malware class, correctly classifying 

799 instances, with relatively low misclassifications: 1 as bening apps, 7 as riskware, 2 

as banking malware, and 8 as adware.

For the banking malware class, 745 instances were accurately predicted, but 30 

were misclassified as benign apps, 12 as riskware, 5 as SMS malware, and 25 as adware.

Finally, the adware class achieved high accuracy with 762 instances correctly clas-

sified and relatively low misclassifications: 27 as benign apps, 6 as riskware, 11 as SMS 

malware, and 11 as banking malware.
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6. DISCUSSION 

As detailed in the Results section, all models achieved weighted accuracies above 93 %, 

which are considered good overall. Furthermore, as observed in Table 5, the highest 

accuracy of 93,95 %, the best precision of 94,1%, and the best recall of 93,95 % were 

obtained with the LightGBM algorithm. These results could be attributed to the unique 

features of the LightGBM algorithm. 

According to Ke et al. (2017), LightGBM is a decision tree-based model designed to 

work efficiently with large datasets. It employs a variant of the gradient boosting technique, 

focusing on leaf-wise tree growth, which improves its efficiency and scalability. Moreover, 

LightGBM utilizes advanced techniques like gradient-based one-side sampling (GOSS) 

and exclusive feature bundling (EFB). GOSS helps to reduce the variance of the model by 

focusing on instances with larger gradients, leading to more accurate predictions. EFB 

bundles mutually exclusive features, reducing the number of splits needed and improving 

computational efficiency. These features likely contributed to a better fit of the model to the 

data, avoiding issues such as overfitting and improving its generalization ability.

The processing of the CICMalDroid 2020 dataset showed different results compared 

to previous studies that employed the same dataset. For instance, Sönmez et al. (2021) 

used machine learning algorithms for malware family classification, achieving a 

maximum precision of 90,2 % and an average recall of 89,54 % with the KNN algorithm. In 

contrast, our study achieved a maximum precision of 94,1 % and a recall of 93,95 % with 

the LightGBM model. This variance can be explained by our use of Decision Tree-based 

and boosting algorithms, leading to better outcomes.

On the other hand, Bhatia and Kaushal (2017) researched malware detection using 

system call frequencies, achieving a precision of 88,9 %. In contrast, our study obtained 

a precision of 94,1 %. This discrepancy can be attributed to differences in dataset size; 

while the authors used 100 records, this research employed a dataset of 4 085 records. 

Additionally, the dataset employed in this research was processed using CopperDroid, a 

tool that enables high-level system call extraction in Android applications, whereas the 

authors used the “strace” command for their system call collection.

Kshirsagar and Agrawal (2022) focused their study on feature selection using 

methods traditionally employed in malware detection systems. They achieved a higher 

precision of 97,46 %; in contrast, our study achieved the highest precision of 94,1%. This 

difference in results can be attributed to the feature selection methods used. The authors 

selected 80 features from 470 original features by using the ReliefF method, which iden-

tifies the most relevant features in a dataset based on their ability to distinguish between 

instances from different classes. In contrast, our study employed 89 features obtained 

from SelectFromModel, a wrapper-based method that selects features based on their 

importance in a pre-trained machine learning model.
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It should be noted that some limitations were found in this research: the impossibility 

of extracting the dynamic behaviors of the APKs with CooperDroid due to its discontin-

uation, which needed the use of  the ‘.csv’ file mentioned in the Methodology section. It 

is also worth mentioning that the obtained data was unbalanced, as the class related to 

SMS malware was the majority class. Consequently, undersampling had to be performed, 

reducing the amount of data compared to the original records to achieve balance.

7. CONCLUSIONS AND FUTURE WORK

In the present research, the effectiveness of machine learning algorithms (RF, LightGBM, 

and XGBoost) was evaluated to identify the most appropriate model to prevent malware 

attacks, using a dataset of dynamically observed malware behaviors. The results indicate 

that the more data used to train the machine learning models, the better the classification 

between families. After preprocessing, 817 records per family were achieved, totaling 

4 085 records. Increasing the amount of data is expected to have a positive impact by 

improving the accuracy rate.

Having compared the results of this study with previous research in the Discussion 

section, it is concluded that dynamically observed behaviors of malware can be success-

fully employed in malware family classification with the assistance of machine learning 

models. Dynamic behaviors offer a more detailed insight into malware characteristics, 

enabling a finer classification. 

Finally, for future research, the plan is to expand the study by reducing the limita-

tions discussed in the previous section, specifically by processing similar numbers of 

malware applications to avoid class imbalance. Likewise, we will seek to implement 

methodologies employed by different authors to reduce the rate of false positives in the 

classification.
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