
Interfases n.° 19, julio 2024, ISSN 1993-4912, pp. 119-138

Dynamic Malware Analysis Using Machine
Learning-Based Detection Algorithms

Erly Galia Villarroel Enriquez
20182063@aloe.ulima.edu.pe
ORCID: 0000-0001-8566-0494

Facultad de Ingeniería, Universidad de Lima

Juan Gutiérrez-Cárdenas
Jmgutier@ulima.edu.pe

ORCID: 0000-0003-2566-4690
Facultad de Ingeniería, Universidad de Lima

Received: May 10th, 2024 / Accepted: June 8th, 2024
doi: https://doi.org/10.26439/interfases2024.n19.7097

ABSTRACT. With the increasing popularity of cell phone use, the risk of malware infec-

tions on such devices has increased, resulting in financial losses for both individuals

and organizations. Current research focuses on the application of machine learning

for the detection and classification of these malware programs. Accordingly, the pres-

ent work uses the frequency of system calls to detect and classify malware using the

XGBoost, LightGBM and random forest algorithms. The highest results were obtained

with the LightGBM algorithm, achieving 94,1 % precision and 93,9 % accuracy, recall,

and F1-score, demonstrating the effectiveness of both machine learning and dynamic

malware analysis in mitigating security threats on mobile devices.

KEYWORDS: malware / machine learning / detection

ANÁLISIS DINÁMICO DE MALWARE MEDIANTE ALGORITMOS DE DETECCIÓN BASADOS
EN MACHINE LEARNING

RESUMEN. Con la creciente popularidad del uso de teléfonos celulares, el riesgo de

infecciones por malware en dichos dispositivos ha aumentado, lo que genera pérdidas

financieras tanto para individuos como para organizaciones. Las investigaciones

actuales se centran en la aplicación del aprendizaje automático para la detección y

clasificación de estos programas malignos. Debido a esto el presente trabajo utiliza

Interfases n.o 19, julio 2024120

E. G. Villarroel, J. Gutiérrez-Cárdenas

la frecuencia de llamadas al sistema para detectar y clasificar malware utilizando

los algoritmos XGBoost, LightGBM y random forest. Los resultados más altos se

obtuvieron con el algoritmo de LightGBM, logrando un 94.1% de precisión y 93.9%

tanto para exactitud, recall y f1-score, lo que demuestra la efectividad tanto del uso

del aprendizaje automático como del uso de comportamientos dinámicos del malware

para la mitigación de amenazas de seguridad en dispositivos móviles.

PALABRAS CLAVE: malware / machine learning / detección

Interfases n.o 19, julio 2024 121

Dynamic Malware Analysis Using Machine Learning-Based Detection Algorithms

1. INTRODUCTION

According to the FortiGuard Labs threat report (Fortinet, 2022) for Latin America and

the Caribbean, cyberattack attempts surged by 600 % in 2021 compared to 2020, consti-

tuting 10 % of the total global attempts. FortiGuard Labs, Fortinet’s threat intelligence

laboratory, also noted that Peru was the third most targeted country, with 11,5 billion

attack attempts, following Mexico and Brazil.

Duo et al. (2022) argue that cyberattacks pose security challenges in cyber systems,

potentially affecting system performance or causing additional damages. These attacks

can take various forms, including denial of service, phishing, or malware.

Several authors (Saravia et al., 2019, as cited in Ashik et al., 2021) define malware as

malicious software embedded in lawful programs to perform criminal activities. With the

rapid spread of the Internet and the proliferation of connected devices, malware attacks

have increased significantly, jeopardizing user privacy.

Regarding the causes of malware infections, Ashik et al. (2021) point out that these

are primarily due to the download of free software such as games, web browsers, or free

antivirus programs. Three common methods by which malware can infiltrate a device

are highlighted: download attack, where malware is hosted on a web server to infect

devices visiting the page; update attack, which modifies a benign application to include

malware characteristics; and repackaging attack, where malware is embedded in a

benign application (Felt et al., 2014, as cited in Surendran & Thomas, 2022).

Current research focuses on enhancing malware detection through machine

learning algorithms. For instance, Mahindru and Sangal (2020) developed a framework

to safeguard Android devices using a dataset containing benign and malicious samples

of Android Package Kit (APK) files collected from sources including Google Play Store,

Android, Panda.App, among others. They employed a feature selection approach,

extracting specific application features (permissions, system calls, number of app down-

loads, and app ratings) for model training using various machine learning algorithms

such as logistic regression, support vector machines (SVM), or random forest (RF), to

compare them with existing models trained on all APK file characteristics. They found

that models employing a feature selection approach outperformed those using the entire

set of extracted features.

The selection of dataset features to be used as input for machine learning models

is also crucial, as noted by Wu et al. (2021). Their study focused on devising why an

application is classified as malware by machine learning algorithms, using application

programming interface (API) calls and permissions from APK files. The dataset collected

by the authors consisted of 20 120 benign applications and 15 570 malicious apps. They

found that these two characteristics alone are insufficient to fully explain malware

behavior.

Interfases n.o 19, julio 2024122

E. G. Villarroel, J. Gutiérrez-Cárdenas

Surendran and Thomas (2022) proposed a novel malware detection system in

Android using graph centrality measures composed of system calls from APK appli-

cations. The RF algorithm exhibited the highest performance, with 0,98 accuracy for

detecting obfuscated malware. Additionally, they suggested further research to reduce

false positive rate (when an application is incorrectly classified as malware).

For this study, a data science approach will be adopted, utilizing the RF, XGBoost,

and LightGBM algorithms, which have been employed in recent research. Louk and Tama

(2022) applied these algorithms to efficiently detect malware, achieving precision and

accuracy above 99,2 % for all three algorithms.

Based on the algorithms currently used in the field of data science, the goal of our

present study is to evaluate the effectiveness of machine learning algorithms such as

RF, LightGBM, or XGBoost on the CICMalDroid 2020 dataset, which utilizes dynamically

observed malware behaviors (actions performed by malware while in execution) to iden-

tify the most suitable model for preventing malware cyberattacks.

This article is organized as follows: Section 2 presents a survey of experimental

studies on major malware detection techniques and machine learning algorithms to

be trained for malware detection scenarios. Section 3 discusses the methodology and

describes the dataset employed. Section 4 presents the experimentation, followed by

the results in Section 5. Section 6 provides discussions and finally Section 7 presents the

conclusions and future works.

2. BACKGROUND

There are two main techniques for analyzing malware: static and dynamic analysis. The

former involves analyzing malware without executing it (Alosefer Y., 2012, as cited in

Aslan & Samet, 2020), while the latter involves analyzing malware as it runs in a real or

virtual environment (Bhat & Dutta, 2019, as cited in Liu et al., 2020). For the present study,

malware execution will not be performed directly; instead, a dataset where dynamic

analysis was previously conducted will be employed.

2.1 Dynamic Analysis

Surendran et al. (2020) claim that to detect malicious activity, dynamic analysis predom-

inantly considers data originating from the running application, including system call

traces and sensitive API calls. It is worth noting that system calls contain more relevant

information about malware behavior compared to API calls, as misclassifications can

occur when a benign application invokes API calls frequently used in malicious appli-

cations. The authors conclude that certain types of legitimate applications, such as face

detection or weather prediction apps, request more system privileges during execution.

In such cases, these benign apps may generate system calls that resemble those found

Interfases n.o 19, julio 2024 123

Dynamic Malware Analysis Using Machine Learning-Based Detection Algorithms

in malware apps, potentially causing these goodware apps to be mistakenly flagged as

malware. To reduce these false positives, the authors suggest future research should

consider both the timing and frequency of malicious system calls in an application.

Feng et al. (2018) highlight that system calls indicate how applications request

services from the operating system to perform important functions such as power

management, device security, and hardware resource access, among others. However,

they can also be used for malicious purposes; the authors note that malware tends to

use more system calls than benign applications. Examples of such system calls include

syscall operations like “fork,” “fchmod,” and “wait4,” which indicate changes in file

ownership containing sensitive information or the creation of child processes to perform

hidden malicious behavior. The authors conclude that despite the effectiveness of their

dynamic analysis framework called EnDroid, which extracts system-level behavior

traces and common application-level malicious behaviors, it is necessary to improve the

coverage of the dynamic analysis for future research.

Surendran and Thomas (2022) focused on tracking system calls to detect malicious

activity in applications, noting that malware applications automatically invoke sensitive

APIs (such as making calls) to execute privileged actions like collecting information from

contacts. For their research, they first gathered system call traces and organized them

into an ordered graph where system calls are vertices and their edges represent adja-

cency relations. This ordered graph enables the extraction of central values from the

system call graph, such as “rename” and “open” system calls, using centrality measure-

ments like eigenvector, betweenness, and closeness. The authors concluded that their

proposed system outperforms existing malware detection mechanisms based on system

calls with an accuracy of 0,99. However, they noted the necessity of using new tools for

collecting system calls from malware applications. Due to the mechanism employed by

the authors, some malware apps did not exhibit malicious behavior during the collection

of syscall traces because of the limited code coverage problem in automated test case

generation tools like monkeyrunner.

As a result of the review, some gaps were identified like the necessity of using

new tools for collecting system calls, improving the coverage of dynamic analysis,

and considering the frequency of occurrence of system calls when analyzing malware

applications. Therefore, in this article, we will use a dataset that includes the number

of occurrences of dynamic malware behaviors and has been processed with a tool that

adequately reconstructs them.

2.2 Supervised Machine Learning Techniques for Malware Detection

Several authors have employed machine learning algorithms to detect malware, utiliz-

ing feature extraction from various datasets. The most relevant works reviewed are

mentioned below.

Interfases n.o 19, julio 2024124

E. G. Villarroel, J. Gutiérrez-Cárdenas

Aebersold et al. (2016) used RF and SVM algorithms on three different datasets:

the first consisting of the complete list of JavaScript samples available on jsDelivr (a

content delivery network for open-source projects), the second including the Top 500

Alexa websites (a page collecting information from websites), and the third consisting of

a set of malicious JavaScript samples gathered from the Swiss Reporting and Analysis

Centre for Information Assurance (MELANI). All precision scores were above 99 %. The

authors concluded that a more representative dataset is needed to perform malware

detection because the dataset of malicious scripts they used was much smaller than the

dataset of benign scripts, making it unclear whether the classifier is capturing the actual

syntactic characteristics correlated with the malicious behavior.

Chen et al. (2018) also used RF and SVM, as well as k-nearest neighbors (KNN),

and applied them to a dataset they collected. The authors focused on two metrics, false

negatives, and accuracy, concluding that the best algorithm was RF with an accuracy

of 96,35 % and a false negative rate of 2,50 % (the lowest among the three algorithms

applied).

Another example of using RF and SVM algorithms is provided by Kim et al. (2018),

who collected macro applications in Excel and Word, then extracted 15 characteristics

from them, such as the number of characters in the code (excluding comments) and

average word length. The models employed ranged from SVM, multi-layer perceptron

(MLP), or RF, resulting in relatively good performance. RF achieved a precision of 98,2 %,

SVM achieved 88,1 %, and MLP achieved 93,8 % in the same metric.

Choudhary and Sharma (2020) also applied these machine learning algorithms—

using datasets from other authors to evaluate malware detection with KNN, SVM,

decision tree, and MLP—obtaining accuracies higher than 87 %, 89 %, 92 %, and 90 %,

respectively. They concluded that machine learning algorithms have greater potential

for malware detection compared to traditional techniques employed by current antivirus

software (signature analysis).

Current research reflects the use of new machine learning algorithms for both

detection and classification compared to past research. Chen et al. (2021) used the

LightGBM algorithm on the Drebin dataset, using the frequency of API calls made

by APK files within the dataset and achieved an accuracy of 99,54 %. Other works

that used LightGBM include those by Gao et al. (2022), Onoja et al. (2022), and Chen

et al. (2023).

New algorithms were also employed by Urooj et al. (2022), who collected

56 000 features from 100 000 Android applications using static analysis. For feature

extraction, they used Androguard and performed feature selection to reduce the

number of features, then input them into machine learning models such as KNN,

naive Bayes (NB), radial basis function (RBF), decision tree, SVM, and AdaBoost

Interfases n.o 19, julio 2024 125

Dynamic Malware Analysis Using Machine Learning-Based Detection Algorithms

with decision trees. They achieved an accuracy of 96,26 % with the AdaBoost model

and a false positive rate of 0,3 %. The authors concluded that ensemble and strong

learner algorithms perform comparatively better when dealing with classifications

and high-dimensional data. They also highlighted that their research approach

was restricted in terms of static analysis, thus it is important to use a dataset with

dynamic features for future research.

Şahın et al. (2022) used algorithms such as KNN, NB, RBF, decision tree, SVM, and

linear methods like Linear Regression, obtaining the best result from the combination

of SVM and decision trees, with an F-measure of 96,95 % for the AMD dataset. They

concluded that the application of popular classification algorithms positively benefits

malware classification. However, they noted that their static analysis approach used APK

permissions as features, emphasizing the need to expand the research using dynamic

behaviors of malware.

Palsa et al. (2022) used the XGBoost algorithm to detect malware in a dataset

they collected through VirusShare, achieving 96,54 % accuracy using dynamic analysis

features. Other authors who used the XGBoost algorithm include Dhamija and Dhamija

(2021) and Kumar and Geetha (2020), who efficiently detected and classified malware

with this novel algorithm. They concluded that the use of machine learning algorithms

potentially benefits the detection of malicious software.

Finally, Louk and Tama (2022) applied RF, XGBoost, CatBoost, gradient boosting

machine (GBM), and LightGBM algorithms to three different datasets containing features

of malware that could be run portably (portable executable [PE] files) on Windows,

obtaining precision and accuracy results above 99,2 % for both metrics. They concluded

that the algorithms that performed best are those based on decision trees, with perfor-

mance differences between algorithms being not statistically significant.

As a result of the literature review on machine learning models used for malware

detection, it is evident that the most recent studies indicate the need to expand research

using dynamic behaviors. It is also noted that the best-performance algorithms are

those using decision trees (including RF), XGBoost, and LightGBM (a variation of gradient

boosting to make it more efficient). This research will therefore experiment with these

three models.

3. METHODOLOGY

This research proposes a methodology based on comparing machine learning algo-

rithms applied to the detection and classification of malware families, specifically RF,

LightGBM, and XGBoost. These algorithms will be applied to the CICMalDroid 2020 data-

set, as described in the Experimentation section. Figure 1 presents the block diagram

outlining the activities to be carried out in the experimentation.

Interfases n.o 19, julio 2024126

E. G. Villarroel, J. Gutiérrez-Cárdenas

Figure 1

General Overview of the Proposed Approach

ClCMalDrioid2020
Exploratory

Data analysis

Outlier
removal

with PyOD
Undersampling

Feature
selection with

Random
Forest

Standard
Scaling

Hyperparameter
Optimization

Cross -
validation

with K folds
Results Analysis

Feature Engineering ML model development

Below is a brief explanation of the methodology:

1. Acquisition of Dataset With System Call Frequencies

 The chosen dataset for this research was CICMalDroid 2020—developed by

Mahdavifar et al. (2020)—which contains the elements outlined in Table 1. It is

important to emphasize that this research will only use the ‘feature_vectors_

syscallsbinders_frequency_5_Cat.csv’ file. This dataset was generated through

dynamic analysis using the CopperDroid tool, a system based on virtual machine

introspection (VMI) that automatically reconstructs specific low-level Android beha-

viors and specific operating system activities from Android samples. According to

the authors, out of 17 341 Android samples, only 13 077 executed successfully while

the remainder failed due to issues such as timeouts, invalid APK files, and memory

allocation difficulties. Additionally, 12 % of the JSON files (CopperDroid output

results in this format) from the successful executions were not uploaded to the

Canadian Institute for Cybersecurity website—where the CICMalDroid 2020 dataset

is stored—due to “unfinished strings” (records that should be in double quotes but

lack a closing quote).

2. Feature Engineering

 An exploratory data analysis was performed to ensure that the dataset does not

contain null values. Given that the dataset is imbalanced, undersampling will be

employed to balance the number of records. The most relevant features will be

selected using the RF algorithm to determine the relative importance of each feature

in predicting the target. The final dataset will be standardized to equalize the scales

of the numbers before being used in the model building process.

3. Application of Machine Learning Models (XGBoost, LightGBM, RF)

 Cross-validation with grid search will be employed to select the best hyperparame-

ters for the machine learning models. Subsequently, the models will be executed

using k-folds cross-validation, and metrics such as accuracy, precision, and

F1-score will be obtained for each model, in addition to the confusion matrix.

Interfases n.o 19, julio 2024 127

Dynamic Malware Analysis Using Machine Learning-Based Detection Algorithms

4. Results Analysis

 For the analysis of the results, precision and recall metrics will be employed as

they are effective to compare multi-class datasets. The results obtained will be

compared with previous research that used the same dataset or datasets that

included only system call frequencies. Possible reasons for differences in results

will be discussed.

4. EXPERIMENTATION

4.1 Description of the Dataset Employed in the Experimentation Section

The components of the CICMalDroid 2020 dataset are described in Table 1.

Table 1

Description of the Components of the CICMalDroid 2020 Dataset

Component Description

APK Files
17 341 Android samples categorized into five groups: riskware, bank-
ing malware, benign samples, SMS malware, and adware.

Capturing Logs
13 077 samples were analyzed and the results were categorized into
five groups: riskware, banking malware, SMS malware, adware, and
benign samples.

Comma-Separated
Values (CSV) Files

‘feature_vectors_syscallsbinders_frequency_5_Cat.csv’:
1. Contains 470 characteristics, including binders, composite behaviors,

and system call frequencies, retrieved from 11 598 APK files.
2. Contains 139 features, including system call frequencies, retrieved

from 11 598 APK files.
3. Contains 50 621 features retrieved from 11 598 APK files, including

static data such as sensitive APIs, files, method tags, intent actions,
permissions, packages, and receivers.

Note. These components and their descriptions were derived from research by Mahdavifar et al. (2020).
The CSV files and dataset components were downloaded from the Canadian Institute for Cybersecurity
website1. The ‘.csv’ file that will be used for the creation of machine learning models in the Experimentation
section is ‘feature_vectors_syscallsbinders_frequency_5_Cat.csv’2. The file contains 470 dynamically
observed behaviors and their frequencies of occurrence during dynamic application analysis. The content
of the extracted ‘.csv’ file is presented in Table 2, and the descriptions of the observed columns are
presented in Table 3.

1 https://www.unb.ca/cic/datasets/maldroid-2020.html
2 https://drive.google.com/file/d/1CuLCATUoxK42LsJhFkV1Vk85Wi7vFXGc/view?usp=sharing

Interfases n.o 19, julio 2024128

E. G. Villarroel, J. Gutiérrez-Cárdenas

Table 2

Visualization of the First Five System Calls From the First Five Records Contained in the ‘feature_
vectors_syscallsbinders_frequency_5_Cat.csv’ File With Their Respective Frequencies

ACCESS_PER-
SONAL_INFO___

ALTER_PHONE_
STATE___

ANTI_DE-
BUG_____

CREATE_FOLD-
ER_____

CREATE_PRO-
CESS`_____

1 0 0 3 0

3 0 0 6 0

2 0 0 4 0

1 0 0 4 0

3 0 0 11 0

Table 3

Description of the First Row in Table 2

System Call Name Description

ACCESS_PERSONAL_INFO___ Permits access to personal information

ALTER_PHONE_STATE___ Modifies the phone’s state variable

ANTI_DEBUG_____ Protects against debugging techniques

CREATE_FOLDER_____ Creates a folder or directory

CREATE_PROCESS`_____ Creates a new process

4.2 Feature Engineering

The Google Colab programming environment was used, with Python as the program-

ming language. For the removal of the most representative outliers, the PyOD library (a

Python library for detecting outlier objects in multivariate datasets) was employed, utiliz-

ing the KNN class for outlier detection. According to the documentation of the PyOD KNN

model, the distance to the nearest neighbor of an observation can be viewed as its outly-

ing score. The model also includes a parameter called contamination, which represents

the proportion of outliers in the dataset. For the purposes of this study, the contamination

value of 0,02 was selected.

Subsequently, class balancing was performed using the imblearn library with the

undersampling method. Figure 2 shows the comparison of the number of records in the

original dataset and after processing with the PyOD library and class balancing with the

imblearn library.

Interfases n.o 19, julio 2024 129

Dynamic Malware Analysis Using Machine Learning-Based Detection Algorithms

Figure 2

Comparison of the Number of Samples in the Original Dataset Versus the Processed Dataset

1253

2100

3904

2546

1795

953

1850

3627

2122

817817 817 817 817 817

0

500

1000

1500

2000

2500

3000

3500

4000

Beningn app Riskware SMS Malware Categories Banking Malware Adware

Original Dataset

Dataset after outlier removal with Pyod

Dataset after undersampling

N
um

be
r

of
 r

ec
or

ds

Finally, variable selection based on importance was conducted using the

SelectFromModel3 library and the RF algorithm. This technique involves identifying the

most relevant features in a dataset by assessing their importance scores. These scores

are determined by the RF model, which evaluates how much each feature contributes to

increasing or reducing impurity across all the trees in the forest.

To achieve this, various threshold values were tested to evaluate the models and

compare accuracy metrics. The threshold corresponding to the best result in Table 4

was selected.

Table 4

Experimentation Carried Out With Different Thresholds to Determine Which Value to Choose

Threshold Number of Features Accuracy

0,001 153 0,9204

0,002 127 0,9241

0,003 107 0,9216

0,004 89 0,9253

0,005 75 0,9192

0,006 62 0,9204

0,007 54 0,9228

3 https://scikit-learn.org/stable/modules/feature_selection.html#select-from-model

(continues)

Interfases n.o 19, julio 2024130

E. G. Villarroel, J. Gutiérrez-Cárdenas

Threshold Number of Features Accuracy

0,008 49 0,9155

0,009 42 0,9228

0,01 34 0,9216

Since the threshold yielding the highest accuracy result is 0,004 (corresponding to

an accuracy of 0,9253), a selection will be made of the 89 attributes whose importance

values exceed the selected threshold.

5. Results

5.1 Training and Test Samples

Training with the machine learning models will use 80 % of the records, while the remain-

ing 20 % will be allocated for testing purposes. Figure 3 illustrates the distribution of

training and testing records for each category.

Figure 3

Comparison of the Number of Training and Testing Records

653 654 653 654 654

164 163 164 163 163

0

100

200

300

400

500

600

700

Beningn app Riskware SMS Malware Categories Banking Malware Adware

Training records

Testing Records

N
um

be
r

of
 r

ec
or

ds

5.2 Machine Learning Models

Table 5 presents the results obtained for each algorithm, including their standard devi-

ation across folds.

(continued)

Interfases n.o 19, julio 2024 131

Dynamic Malware Analysis Using Machine Learning-Based Detection Algorithms

Table 5

Comparative Table of Precision, Recall, Accuracy, and F1-Score Results for Machine Learning
Algorithms With Standard Deviation Across Folds

Algorithms Accuracy Precision Recall F1-Score

Random Forest 0,9356 ± 0,0140 0,9379 ± 0,0129 0,9356 ± 0,0140 0,9358 ± 0,0139

XGBoost 0,9349 ± 0,0118 0,9362 ± 0,0111 0,9349 ± 0,0118 0,9350 ± 0,0116

Light GBM 0,9395 ± 0,0105 0,9410 ± 0,0102 0,9395 ± 0,0105 0,9396 ± 0,0105

The data within Table 5 presents the precision, recall, accuracy, and F1-score

outcomes achieved by three distinct machine learning algorithms: RF, XGBoost, and Light

GBM. Despite relatively minor differences, Light GBM emerged as the top performer,

attaining the highest accuracy of 0,9395 ± 0,0105, the highest precision score of 0,9410 ±

0,0102, and the highest recall rate of 0,9395 ± 0,0105. XGBoost followed closely with the

second highest accuracy of 0,9349 ± 0,0118, the second best precision score of 0,9362

± 0,0111, and the second best recall rate of 0,9349 ± 0,0118. RF trailed slightly behind,

achieving an accuracy of 0,9356 ± 0,0140, a precision score of 0,9379 ± 0,0129, and a

recall rate of 0,9356 ± 0,0140, which was the lowest among the three algorithms.

Figure 4

Confusion Matrix of the RF Algorithm After Applying Stratified K-Fold Cross-Validation (10 Folds)

Confusion Matrix

Benign Apps -

Riskware -

SMS Malware -

Banking Malware -

Adware -

Benign Apps Riskware SMS Malware
Predicted

Banking Malware Adware

A
ct

ua
l

Or the Benign Apps class, the model achieved an excellent accuracy by correctly

identifying 763 instances. However, it misclassified 6 instances as riskware, 4 as SMS

malware, 11 as banking malware, and 33 as adware.

Interfases n.o 19, julio 2024132

E. G. Villarroel, J. Gutiérrez-Cárdenas

In the riskware class, the model accurately predicted 762 instances but misclassi-

fied 19 as benign apps, 10 as SMS malware, 5 as banking malware, and 21 as adware.

The model exhibited high accuracy for the SMS malware class, correctly classifying

803 instances. Misclassifications were minimal, with 2 instances classified as benign

apps, 4 as riskware, and 8 as adware.

For banking malware class, the model correctly predicted 734 instances but

misclassified 32 instances as benign apps, 11 as riskware, 4 as SMS malware, and 36 as

adware.

Finally, the Adware class achieved high accuracy with 760 instances correctly clas-

sified. Misclassifications were relatively low, with 25 instances classified as benign apps,

8 as riskware, 14 as SMS malware, and 10 as banking malware.

Figure 5

Confusion Matrix of the XGBoost Algorithm After Applying Stratified K-Fold Cross-Validation
(10 Folds)

Confusion Matrix

Benign Apps -

Riskware -

SMS Malware -

Banking Malware -

Adware -

Benign Apps Riskware SMS Malware
Predicted

Banking Malware Adware

A
ct

ua
l

As shown in Figure 5, for the benign apps class, the model correctly identified 761

instances but misclassified 6 as riskware, 4 as SMS malware, 18 as banking malware,

and 28 as adware.

In the riskware class, 758 instances were accurately predicted, while 20 were

misclassified as benign apps, 10 as sms malware, 8 as banking malware, and 21 as

adware.

The model exhibited a high accuracy for the SMS malware class, correctly classi-

fying 799 instances, with relatively low misclassifications: 10 as riskware, 1 as banking

malware, and 7 as adware.

Interfases n.o 19, julio 2024 133

Dynamic Malware Analysis Using Machine Learning-Based Detection Algorithms

For the banking malware class, 747 instances were accurately predicted, but 30

were misclassified as benign apps, 11 as riskware, 5 as SMS malware, and 24 as adware.

Finally, the adware class achieved high accuracy with 754 instances correctly clas-

sified. Misclassifications were relatively low: 24 as benign apps, 8 as riskware, 16 as SMS

malware, and 15 as banking malware.

Figure 6

Confusion Matrix of the LightGBM Algorithm After Applying Stratified K-Fold Cross-Validation
(10 Folds)

Confusion Matrix

Benign Apps -

Riskware -

SMS Malware -

Banking Malware -

Adware -

Benign Apps Riskware SMS Malware
Predicted

Banking Malware Adware

A
ct

ua
l

As illustrated in Figure 6, for the benign apps class, the model correctly identi-

fied 765 instances but misclassified 6 as riskware, 3 as SMS malware, 16 as banking

malware, and 27 as adware.

In the riskware class, 767 instances were accurately predicted, while 19 were

misclassified as benign apps, 5 as SMS malware, 7 as banking malware, and 19 as

adware.

The model exhibited high accuracy for the SMS malware class, correctly classifying

799 instances, with relatively low misclassifications: 1 as bening apps, 7 as riskware, 2

as banking malware, and 8 as adware.

For the banking malware class, 745 instances were accurately predicted, but 30

were misclassified as benign apps, 12 as riskware, 5 as SMS malware, and 25 as adware.

Finally, the adware class achieved high accuracy with 762 instances correctly clas-

sified and relatively low misclassifications: 27 as benign apps, 6 as riskware, 11 as SMS

malware, and 11 as banking malware.

Interfases n.o 19, julio 2024134

E. G. Villarroel, J. Gutiérrez-Cárdenas

6. DISCUSSION

As detailed in the Results section, all models achieved weighted accuracies above 93 %,

which are considered good overall. Furthermore, as observed in Table 5, the highest

accuracy of 93,95 %, the best precision of 94,1%, and the best recall of 93,95 % were

obtained with the LightGBM algorithm. These results could be attributed to the unique

features of the LightGBM algorithm.

According to Ke et al. (2017), LightGBM is a decision tree-based model designed to

work efficiently with large datasets. It employs a variant of the gradient boosting technique,

focusing on leaf-wise tree growth, which improves its efficiency and scalability. Moreover,

LightGBM utilizes advanced techniques like gradient-based one-side sampling (GOSS)

and exclusive feature bundling (EFB). GOSS helps to reduce the variance of the model by

focusing on instances with larger gradients, leading to more accurate predictions. EFB

bundles mutually exclusive features, reducing the number of splits needed and improving

computational efficiency. These features likely contributed to a better fit of the model to the

data, avoiding issues such as overfitting and improving its generalization ability.

The processing of the CICMalDroid 2020 dataset showed different results compared

to previous studies that employed the same dataset. For instance, Sönmez et al. (2021)

used machine learning algorithms for malware family classification, achieving a

maximum precision of 90,2 % and an average recall of 89,54 % with the KNN algorithm. In

contrast, our study achieved a maximum precision of 94,1 % and a recall of 93,95 % with

the LightGBM model. This variance can be explained by our use of Decision Tree-based

and boosting algorithms, leading to better outcomes.

On the other hand, Bhatia and Kaushal (2017) researched malware detection using

system call frequencies, achieving a precision of 88,9 %. In contrast, our study obtained

a precision of 94,1 %. This discrepancy can be attributed to differences in dataset size;

while the authors used 100 records, this research employed a dataset of 4 085 records.

Additionally, the dataset employed in this research was processed using CopperDroid, a

tool that enables high-level system call extraction in Android applications, whereas the

authors used the “strace” command for their system call collection.

Kshirsagar and Agrawal (2022) focused their study on feature selection using

methods traditionally employed in malware detection systems. They achieved a higher

precision of 97,46 %; in contrast, our study achieved the highest precision of 94,1%. This

difference in results can be attributed to the feature selection methods used. The authors

selected 80 features from 470 original features by using the ReliefF method, which iden-

tifies the most relevant features in a dataset based on their ability to distinguish between

instances from different classes. In contrast, our study employed 89 features obtained

from SelectFromModel, a wrapper-based method that selects features based on their

importance in a pre-trained machine learning model.

Interfases n.o 19, julio 2024 135

Dynamic Malware Analysis Using Machine Learning-Based Detection Algorithms

It should be noted that some limitations were found in this research: the impossibility

of extracting the dynamic behaviors of the APKs with CooperDroid due to its discontin-

uation, which needed the use of the ‘.csv’ file mentioned in the Methodology section. It

is also worth mentioning that the obtained data was unbalanced, as the class related to

SMS malware was the majority class. Consequently, undersampling had to be performed,

reducing the amount of data compared to the original records to achieve balance.

7. CONCLUSIONS AND FUTURE WORK

In the present research, the effectiveness of machine learning algorithms (RF, LightGBM,

and XGBoost) was evaluated to identify the most appropriate model to prevent malware

attacks, using a dataset of dynamically observed malware behaviors. The results indicate

that the more data used to train the machine learning models, the better the classification

between families. After preprocessing, 817 records per family were achieved, totaling

4 085 records. Increasing the amount of data is expected to have a positive impact by

improving the accuracy rate.

Having compared the results of this study with previous research in the Discussion

section, it is concluded that dynamically observed behaviors of malware can be success-

fully employed in malware family classification with the assistance of machine learning

models. Dynamic behaviors offer a more detailed insight into malware characteristics,

enabling a finer classification.

Finally, for future research, the plan is to expand the study by reducing the limita-

tions discussed in the previous section, specifically by processing similar numbers of

malware applications to avoid class imbalance. Likewise, we will seek to implement

methodologies employed by different authors to reduce the rate of false positives in the

classification.

REFERENCES

Aebersold, S., Kryszczuk, K., Paganoni, S., Tellenbach, B., & Trowbridge, T. (2016).

Detecting obfuscated JavaScripts using machine learning. ICIMP 2016 the

Eleventh International Conference on Internet Monitoring and Protection: May 22-26,

2016, Valencia, Spain, 1, 11–17. https://doi.org/10.21256/zhaw-3848

Ashik, M., Jyothish, A., Anandaram, S., Vinod, P., Mercaldo, F., Martinelli, F., & Santone,

A. (2021). Detection of malicious software by analyzing distinct artifacts using

machine learning and deep learning algorithms. Electronics, 10(14), 1694. https://

doi.org/10.3390/electronics10141694

Aslan, Ö. A., & Samet, R. (2020). A comprehensive review on malware detection approaches.

IEEE Access, 8, 6249-6271. https://doi.org/10.1109/ACCESS.2019.2963724

Interfases n.o 19, julio 2024136

E. G. Villarroel, J. Gutiérrez-Cárdenas

Bhatia, T., & Kaushal, R. (2017). Malware detection in android based on dynamic

analysis. 2017 International Conference on Cyber Security and Protection Of

Digital Services (Cyber Security), London, UK, 1-6. https://doi.org/10.1109/

CyberSecPODS.2017.8074847

Chen, S., Xue, M., Fan, L., Hao, S., Xu, L., Zhu, H., & Li, B. (2018). Automated poisoning

attacks and defenses in malware detection systems: An adversarial machine

learning approach. Computers and Security, 73, 326-344. https://doi.org/10.1016/j.

cose.2017.11.007

Chen, Y. C., Chen, H. Y., Takahashi, T., Sun, B., & Lin, T. N. (2021). Impact of code deobfuscation

and feature interaction in android malware detection. IEEE Access, 9, 123208-

123219. https://doi.org/10.1109/ACCESS.2021.3110408

Chen, Z., & Ren, X. (2023). An efficient boosting-based windows malware family

classification system using multi-features fusion. Applied Sciences, 13(6), 4060.

https://doi.org/10.3390/app13064060

Choudhary, S., & Sharma, A. (2020, February). Malware detection & classification

using machine learning. 2020 International Conference on Emerging Trends in

Communication, Control and Computing (ICONC3), Lakshmangarh, India, 1-4.

https://doi.org/10.1109/ICONC345789.2020.9117547

Dhamija, H., & Dhamija, A. K. (2021). Malware detection using machine learning classification

algorithms. International Journal of Computational Intelligence Research (IJCIR),

17(1), 1-7. https://www.ripublication.com/ijcir21/ijcirv17n1_01.pdf

Duo, W., Zhou, M., & Abusorrah, A. (2022). A survey of cyber attacks on cyber physical

systems: Recent advances and challenges. IEEE/CAA Journal of Automatica

Sinica, 9(5), 784-800. https://doi.org/10.1109/JAS.2022.105548

Feng, P., Ma, J., Sun, C., Xu, X., & Ma, Y. (2018). A novel dynamic android malware detection

system with ensemble learning. IEEE Access, 6, 30996-31011. https://doi.

org/10.1109/ACCESS.2018.2844349

Fortinet. (2022, February 8). América Latina sufrió más de 289 mil millones de

intentos de ciberataques en 2021 [Press release]. https://www.fortinet.

co m/l a t /co r p o r a te/ab o u t- us/n ewsr o o m/p r e s s - r e l e a s e s/2022/

fortiguard-labs-reporte-ciberataques-america-latina-2021

Gao, Y., Hasegawa, H., Yamaguchi, Y., & Shimada, H. (2022). Malware detection using

LightGBM with a custom logistic loss function. IEEE Access, 10, 47792-47804.

https://doi.org/10.1109/ACCESS.2022.3171912

Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W., Ye, Q., & Liu, T. Y. (2017). LightGBM:

A highly efficient gradient boosting decision tree. 31st Conference on Neural

Information Processing Systems (NIPS 2017), Long Beach, CA, USA. https://

Interfases n.o 19, julio 2024 137

Dynamic Malware Analysis Using Machine Learning-Based Detection Algorithms

proceedings.neurips.cc/paper_files/paper/2017/file/6449f44a102fde848669bd

d9eb6b76fa-Paper.pdf

Kim, S., Hong, S., Oh, J., & Lee, H. (2018, June). Obfuscated VBA macro detection using

machine learning. 2018 48th Annual IEEE/IFIP International Conference on

Dependable Systems and Networks (DSN), Luxembourg, Luxembourg, 490-501.

https://doi.org/10.1109/DSN.2018.00057

Kshirsagar, D., & Agrawal, P. (2022). A study of feature selection methods for android

malware detection. Journal of Information and Optimization Sciences, 43(8), 2111-

2120. https://doi.org/10.1080/02522667.2022.2133218

Kumar, R., & Geetha, S. (2020). Malware classification using XGboost-Gradient boosted

decision tree. Advances in Science, Technology and Engineering Systems Journal,

5(5), 536–549. https://doi.org/10.25046/aj050566

Mahdavifar, S., Kadir, A. F. A., Fatemi, R., Alhadidi, D., & Ghorbani, A. A. (2020). Dynamic

android malware category classification using semi-supervised deep

learning. 2020 IEEE Intl Conf on Dependable, Autonomic and Secure Computing,

Intl Conf on Pervasive Intelligence and Computing, Intl Conf on Cloud and Big Data

Computing, Intl Conf on Cyber Science and Technology Congress (DASC/PiCom/

CBDCom/CyberSciTech), Calgary, AB, Canada, 515-522. https://doi.org/10.1109/

DASC-PICom-CBDCom-CyberSciTech49142.2020.00094

Mahindru, A., & Sangal, A. L. (2021). MLDroid—Framework for Android malware detection

using machine learning techniques. Neural Computing and Applications, 33, 5183-

5240. https://doi.org/10.1007/s00521-020-05309-4

Liu, K., Xu, S., Xu, G., Zhang, M., Sun, D., & Liu, H. (2020). A review of android malware

detection approaches based on machine learning. IEEE Access, 8, 124579-

124607. https://doi.org/10.1109/ACCESS.2020.3006143

Louk, M. H. L., & Tama, B. A. (2022). Tree-based classifier ensembles for PE malware

analysis: A performance revisit. e, 15 (9), 332. https://doi.org/10.3390/a15090332

Onoja, M., Jegede, A., Blamah, N., Abimbola, O. V., & Omotehinwa, T. O. (2022). EEMDS:

Efficient and effective malware detection system with hybrid model based on

xceptioncnn and lightgbm algorithm. Journal of Computing and Social Informatics,

1(2), 42-57. https://doi.org/10.33736/jcsi.4739.2022

Palša, J., Ádám, N., Hurtuk, J., Chovancová, E., Madoš, B., Chovanec, M., & Kocan, S. (2022).

MLMD—A malware-detecting antivirus tool based on the XGBoost machine learning

algorithm. Applied Sciences, 12(13), 6672. https://doi.org/10.3390/app12136672

Şahın, D. Ö., Akleylek, S., & Kiliç, E. (2022). LinRegDroid: Detection of Android malware

using multiple linear regression models-based classifiers. IEEE Access, 10,

14246–14259. https://doi.org/10.1109/ACCESS.2022.3146363

Interfases n.o 19, julio 2024138

E. G. Villarroel, J. Gutiérrez-Cárdenas

Sönmez, Y., Salman, M., & Dener, M. (2021). Performance analysis of machine learning

algorithms for malware detection by using CICMalDroid2020 dataset. Düzce

University Journal of Science and Technology, 9(6), 280-288. https://doi.

org/10.29130/dubited.1018223

Surendran, R., & Thomas, T. (2022). Detection of malware applications from centrality

measures of syscall graph. Concurrency and Computation: Practice and Experience,

34(10). https://doi.org/10.1002/cpe.6835

Surendran, R., Thomas, T., & Emmanuel, S. (2020). On existence of common malicious

system call codes in android malware families. IEEE Transactions on Reliability,

70(1), 248-260. https://doi.org/10.1109/TR.2020.2982537

Urooj, B., Shah, M. A., Maple, C., Abbasi, M. K., & Riasat, S. (2022). Malware detection:

a framework for reverse engineered android applications through machine

learning algorithms. IEEE Access, 10, 89031-89050. https://doi.org/10.1109/

ACCESS.2022.3149053

Wu, B., Chen, S., Gao, C., Fan, L., Liu, Y., Wen, W., & Lyu, M. R. (2021). Why an android

app is classified as malware: Toward malware classification interpretation.

ACM Transactions on Software Engineering and Methodology (TOSEM), 30(2), 1-29.

https://doi.org/10.1145/3423096

