
Interfases n.° 19, julio 2024, ISSN 1993-4912, pp. 77-94

Testing Asymmetric Encryption in a
Sustainable Hacking Lab

Michael Dorin
mike.dorin@stthomas.edu

https://orcid.org/0000-0002-5798-0623
University of St. Thomas, St. Paul, MN. USA

Sergio Montenegro
sergio.montenegro@uni-wuerzburg.de

https://orcid.org/0000-0002-3958-3018
Julius-Maximilians-Universität Würzburg, Würzburg Germany

Received: April 15th, 2024 / Accepted: May 18th, 2024
doi: https://doi.org/10.26439/interfases2024.n19.7058

ABSTRACT. The Aerospace Information Technology Department (Computer Science VIII)

at University of Würzburg explores many facets of aerospace systems, including secure

telemetry and telecommand systems. Because satellites are expensive and indispens-

able, thorough protection and security research is necessary. Security algorithms are

often processor-intensive, which can deprive payload applications of valuable execu-

tion cycles and even system power, thus making proper algorithm selection essential.

A mechanism for execution and analysis on devices of similar capability to hardware

systems used in space applications is essential for proper algorithm selection. This

paper shows that it is possible to create an inexpensive and sustainable lab to effi-

ciently and correctly test encryption algorithms and protocols using discarded tablet

computers and inexpensive single-board computers. The lab constructed began by eval-

uating three public encryption key algorithms to assess computational space and time

requirements. The three algorithms include an implementation of prime number-based

Rivest-Shamir-Adleman (RSA) and two elliptic-curve cryptography-based key-exchange

implementations. The initial results for the three algorithms show RSA memory require-

ments are not substantially different from the elliptic curve algorithms, but running times

are comparatively slower. The first elliptic curve cryptography algorithm has moderate

run time and space requirements, while the second one shows an improved run time

but requires more space. This study reveals that testing algorithms using affordable lab

devices can provide useful performance related data.

KEYWORDS: asymmetric encryption / sustainable hacking lab / satellite
communications / RODOS

Interfases n.o 19, julio 202478

M. Dorin, S. Montenegro

PRUEBAS DE CIFRADO ASIMÉTRICO EN UN LABORATORIO DE HACKING SOSTENIBLE

RESUMEN. El Departamento de Tecnología de la Información Aeroespacial (Ciencias de

la Computación VIII) de la Universidad de Würzburg explora muchos aspectos de los

sistemas aeroespaciales, incluidos los sistemas seguros de telemetría y telemando.

Debido a que los satélites son costosos e indispensables, es necesaria una investigación

exhaustiva sobre su protección y seguridad. Los algoritmos de seguridad suelen

requerir un uso intensivo de los procesadores, lo que puede privar a las aplicaciones

de carga útil de ciclos de ejecución valiosos e incluso de energía del sistema. Por ello,

es esencial una selección adecuada de los algoritmos que se utilizarán. Disponer de

un mecanismo para la ejecución y el análisis, en dispositivos de capacidades similares

a los sistemas y el hardware que se utilizan en las aplicaciones espaciales, es

fundamental para una correcta selección de algoritmos. Este artículo muestra que es

posible crear un laboratorio económico y sostenible para probar de manera eficiente y

precisa los algoritmos de encriptación y protocolos utilizando tabletas descartadas y

computadoras de placa única económicas. El laboratorio que se construyó con ellas se

utilizó para evaluar tres algoritmos públicos de clave de encriptación para determinar

los requisitos computacionales de espacio y tiempo. Los tres algoritmos incluyen una

implementación del algoritmo de clave pública basado en números primos Rivest-

Shamir-Adleman (RSA) y dos implementaciones de intercambio de clave basadas en

criptografía de curva elíptica. Los resultados iniciales muestran que los requisitos de

memoria de estos algoritmos no son sustancialmente diferentes, pero los tiempos de

ejecución del algoritmo RSA son comparativamente más lentos. El primer algoritmo

de criptografía de curva elíptica tiene requisitos moderados de tiempo de ejecución

y espacio, mientras que el segundo muestra un tiempo de ejecución mejorado, pero

requiere más espacio. Este estudio revela que probar algoritmos utilizando dispositivos

de laboratorio asequibles puede proporcionar datos útiles acerca de su rendimiento.

PALABRAS CLAVE: encriptación asimétrica / laboratorio de hackeo sostenible /
comunicaciones satelitales / RODOS

Interfases n.o 19, julio 2024 79

Testing Asymmetric Encryption in a Sustainable Hacking Lab

1. INTRODUCTION

The negative perception of hacking involves illicitly accessing computer systems and

data (Sciglimpaglia Jr, 1991). Cybercriminals can use hacking to sabotage scientific and

aerospace endeavors, hamper studies, breach security and endanger missions. Although

researchers from the Aerospace Information Technology Department (Computer Science

VIII) at the University of Würzburg have yet to encounter any security issues related to

commanding spacecraft, as the cost of powerful hardware systems decreases, so does

the cost of cyberattacks. This makes it necessary to build a hacking lab to start evaluat-

ing encryption algorithms.

Many researchers utilize virtual machines (VM) to create security labs. For example,

Guarda et al. (2016) describe penetration testing using virtual environments, while Lee et

al. (2023) describe simulation-based cybersecurity testing. As early as 2003, Garfinkel

and Rosenblum (2003) were able to demonstrate a successful use of virtual machines for

intrusion detection. VMs can work satisfactorily in many environments; however, since

resources are shared overall, multiple VMs can create confusing time measurements

when running different tests.

In regards to encryption algorithms, several papers in the current literature address

encryption and telemetry/telecommand system (TM/TC) security. For example, López

and Fraga (2016) describe a TM/TC encryption system using the Advanced Encryption

Standard (AES). This paper suggests that AES is emerging as the new de-facto standard

for satellite telemetry and telecommand systems. Another interesting paper on TM/TC

security is from Hoang et al. This compelling paper discusses physical layer security

(Hoang et al., 2021). Meanwhile, Herpel et al. (2016) address security by showing a soft-

ware architecture for satellites. While these papers are helpful, they do not specifically

address algorithms that are a good fit for the Realtime Onboard Dependable Operating

System (RODOS). More information on RODOS can be found in Appendix A.

Regarding algorithms appropriate for RODOS, further examination of the litera-

ture covers more specific algorithm implementations. Many papers discuss the efficient

implementation of Rivest-Shamir Adleman (RSA). Two examples from Nozaki et al. (2001)

and Zhou and Tang. (2011) offer detailed analyses. There are also several papers on the

implementation of elliptic curve cryptography (ECC). Point operations, for instance, can

also be partially reduced by using the Hamming weight of the private key (commonly

known as the multiplicand ‘k’). In their work Fast Algorithms for Common-Multiplicand

Multiplication and Exponentiation by Performing Complements, Chang et al. (2003) explain

how to reduce the Hamming weight of the multiplicand which, in this case, can reduce

point operations. Hamming weights have been discussed for more than fifty years and

more information can be found in the work of Hamming (1970). Further research on

using Hamming weights to save processing time has been conducted by various authors,

including Kodali and Budwal (2013) and Huang et al (2010). Although these papers are

interesting, they do not cover implementation details required by small devices.

Interfases n.o 19, julio 202480

M. Dorin, S. Montenegro

Because previous research has not thoroughly addressed the security and encryp-

tion testing needs required for embedded applications in space using RODOS, this project

explores the construction of a practical hacking lab to test the time it takes each of three

asymmetric encryption algorithms to perform key exchange. This project selected

specific RSA and ECC implementations having equivalent security levels when measured

against symmetric encryption algorithms. In symmetric algorithms, if an n-bit key does

not allow a faster attack than a brute force attack, then the algorithm is defined to have

security level n (Lenstra, 2006). For this research, 80 bits of asymmetric encryption

was determined to be the minimum acceptable level. RSA and ECC were selected to be

compared at symmetric encryption levels of 80, 112, 128, 192 and 256 bits to evaluate

algorithm performance. As such, corresponding RSA implementations of 1024, 2048,

3072, 7680 and 15360 bits were evaluated, while the corresponding curves B163, B233,

B283, B409 and B571 were selected for ECC testing (Brown et al., 2001). Algorithms ECC

were implemented in C using an embedded ECC library (Kokke, 2017). Algorithms for RSA

were also implemented in C and a large number library (BigDigits multiple-precision

arithmetic source code, s/f). This paper demonstrates that creating a hacking lab and

testing algorithms for ground, air and space communications is feasible and practical.

2. PROJECT FOUNDATION AND ALGORITHMS

2.1 TM/TC and RODOS

Every satellite and spacecraft requires telemetry and command interfaces at one or

more ground stations to receive payload data and to monitor and control the spacecraft.

Telemetry (TM) refers to the process of collecting and transmitting data from the space-

craft to the ground station, where this data is visualized for operators and engineers.

Telecommand (TC) interfaces allow operators to send commands and instructions from

the ground station to the spacecraft (Maral et al., 2020).

Typically, TM and TC are developed separately, with one team developing the TM

software for the spacecraft side and another team developing the TC counterpart for

the ground station. However, RODOS employs an application generator called Corfu to

specify telemetry and telecommands. Corfu generates the code for the spacecraft and

for the ground station. For the spacecraft, it generates the distribution of telecommands

and a frame to interpret and execute each of them, while for TM it generates the frame

to collect, pack and send data from the spacecraft to ground station. For the ground

station side, Corfu generates decoders and graphical representations for all telemetry

data. It generates buttons to send commands and fields to enter their parameters. These

commands and their parameters are then encoded and sent to the spacecraft.

Interfases n.o 19, julio 2024 81

Testing Asymmetric Encryption in a Sustainable Hacking Lab

2.2. Encryption Algorithms Tested

Saltzer and Schroeder (1975) suggested that security mechanisms should be as small

as possible to be of aid in their verification, which is undoubtedly true in resource-

starved environments. To allow for the creation of small mechanisms and achieve secure

communication, a practical hacking lab was built, and RSA plus two variations of ECC

were tested.

2.2.1 Rivest-Shamir-Adleman

The first algorithm tested was an RSA public key authentication. RSA was invented

in 1977 and is based on the difficulty of factoring large composite numbers into their

prime factors. The algorithm relies on a public-private key pair, where the public key

is used for encryption and the private key is used for decryption (Salami et al., 2023).

More basic information on RSA can be found in Appendix B. For this test, a complete RSA

key exchange was simulated. RSA was selected for this test because of its perceived

compactness and simplicity of implementation.

2.2.2 Elliptic Curve Cryptography

This paper does not describe the details of ECC, but information is provided in Appendix

C. Two variants of ECC multiply were evaluated simulating a key exchange using Elliptic

Curve Diffie-Helman (ECDH). More information on ECDH can be found in Appendix D.

The first variant employs the hamming weight of the multiplicand to potentially reduce

the overall number of operations required for the multiply. The second approach also

employs Hamming weights, but in this variant an entry in the lookup table is created for

each bit of the curve. For example, in the case of the 163-bit curve, 163 entries are creat-

ed. As with standard multiplication, the private key ‘k’ is shifted to the right. However,

instead of doing a ‘double and add’ when odd, the point value for the particular bit is

found in the lookup table and is then added to a running sum, creating the product. This

eliminates the need for the point to double each pass through the loop. As before, this

algorithm can potentially be made even faster using Hamming weights. To take advan-

tage of Hamming weights, an inverse value of k, inverseK, is subtracted from the next

power of two above k, np. The resulting calculation is

The value of inverseK is calculated by subtracting k from the next power, as

Next, choose k or inverseK based on the Hamming weight. If inverseK is used, an

extra subtraction is done at the end to transform the result to the original k, but the

algorithm guarantees that the number of adds required is never greater than the number

Interfases n.o 19, julio 202482

M. Dorin, S. Montenegro

of bits in k, though there is the Hamming math at the beginning and a point subtract

required at the end when inverseK is used. Source code for this algorithm is provided

in Appendix E. The algorithm demonstrated here is a refinement of the implementation

made by Dorin (2009) and was inspired by work conducted in the 1960s when speeding

up normal multiplication was required. For instance, Mitchell (1962) described computer

multiplication and division using binary logarithms. More recently, Koshelev (2024)

describes using Hamming weight for elliptic curve hashing algorithms. Nascimento et al.

(2015) describe the use of lookup tables in their 8-bit implementation of ECC.

2.3 Simulation Equipment

Establishing a sustainable hacking lab requires completing common steps regardless

of the algorithms being tested. The first action was acquiring suitable devices. For this

study, both Linux-based devices and single-board computers were desired. Regarding

Linux-based devices, systems were recommended to have at least 4 GB of RAM and at

least 20 GB of persistent storage (The Linux Mint Team, 2024a). It was not difficult to find

suitable devices as many surplus devices are sold on eBay for less than USD20 each. The

final tablets arrived in the form of a collection of electronics generously donated to the

University of St. Thomas. Those planning to set up an analogous lab can likely find equip-

ment by contacting local electronics recyclers. Discarded electronics are often available

at a low price or even at no cost. Recycling electronics can save money and increase the

sustainability of the lab’s construction. Specifications for the selected are available in

Table 1. An image of a selected tablet is shown in Figure 1.

Table 1

Tablet specifications

Component Details

CPU Frequency 1.4 Gigahertz

Processor Type Intel Atom (Quad-Core)

Available Networking Wi-Fi and Bluetooth

USB Ports 1 External (3 total)

Available RAM 4 Gigabytes

Persistent Storage 30 Gigabytes

Operating System Linux (Mint)

The STM32F407-DISC1 was selected given that an actual embedded target was also

desired for this project. According to the manufacturer, the STM32F407VGT6 microcon-

troller features a 32-bit Arm Cortex-M4 with an FPU core, 1-MB of Flash memory, and

192 KB of RAM (STMicroelectronics, 2024a). See Figure 2.

Interfases n.o 19, julio 2024 83

Testing Asymmetric Encryption in a Sustainable Hacking Lab

The tablets were re-imaged with the Mint distribution of the Linux operating system

(The Linux Mint Team, 2024b). Mint was selected because it is stable, well-supported

and easy to install. GNU compiler collection (GCC) tools were used for development on

the Linux devices (Fenlason & Stallman, 1998). The STM32 Discovery board was used

as-is out of the box. The STM32CubeIDE was used for development and project gener-

ation (STMicroelectronics, 2024b). Standard settings given by the STM32CubeIDE were

not modified.

Figure 1

The tablet device used for testing.

Figure 2

The STM32 discovery board used in testing

Interfases n.o 19, julio 202484

M. Dorin, S. Montenegro

3. RESULTS

On each hardware platform, key-exchange mathematics were performed on the algo-

rithm being tested. This test code was executed continuously on the STM32 and an

oscilloscope was used to measure timing. The key value used in the exchange remained

unchanged for all tests. Table 2 displays a summary of results for the minimally accept-

able security level, equivalent to 80 bits symmetric encryption, on both platforms.

Table 2

Program response time for 80 bit security strength

Device Build Test Program Size
(bytes)

Response Time
(msec.)

STM32 RSA 37,980 3,810

STM32 ECDH Hamming Only 28,072 2,730

STM32 ECDH Hamming and
Lookup Table

37,296 2,095

Linux RSA 77,904 184.45

Linux ECDH Hamming Only 36,776 46.13

Linux ECC Hamming and
Lookup Table

 37,664 31.49

3.1 RSA

The first algorithm tested was RSA, using the STM device. Table 3 shows the required

time for completion as well as the size of the executable. Note that the terms text, data,

and bss refer to different sections of program memory. The text section contains execut-

able code. The bss section contains uninitialized variables. The data section contains

global and static variables (Pesch et al., 1993). Table 3 reports the STM32 results, Table

4 reports the results from the Linux system.

Table 3

RSA key exchange simulation (STM32)

Security
Strength

RSA bits Program Size Bytes
(text, data, bss)

Response Time (msec)

80 1024 35,228 bytes 3,810

112 2048 38,848 bytes 27,970

128 3072 39,360 bytes 90,400

192 7680 41,664 bytes 844,926*

256 15360 45,504 bytes 3,824,620*

Note. * indicates that operation time is estimated.

Interfases n.o 19, julio 2024 85

Testing Asymmetric Encryption in a Sustainable Hacking Lab

Table 4

RSA key exchange simulation (Linux)

Security
Strength

RSA bits Program Size Bytes
(a.out)

Response Time
(msec)

80 1024 77,904 bytes 184.45

112 2048 77,904 bytes 1,350.69

128 3072 82,000 bytes 4,399.72

192 7680 82,000 bytes 65,894.26

256 15360 86,096 bytes 516,835.02

3.2 ECDH Using Basic Multiply with Hamming Weight

The next algorithm tested was ECDH using ECC basic multiply with Hamming weight. This

version of multiplication did not use a lookup table. STM32 results are shown in Table 5,

the Linux results are shown in Table 6.

Table 5

ECDH key exchange simulation (No lookup) (STM32)

Security
Strength

ECC
Algorithm

Program Size Bytes
(text, data, bss)

Response Time
(msec)

80 B163 28,156 312.94

112 B233 28,176 545.0

128 B283 28,192 720.0

192 B409 28,228 1,475.0

256 B571 28,244 2,570.0

Table 6

ECDH key exchange simulation (No lookup) (Linux)

Security
Strength

ECC
Algorithm

Program Size Bytes
(a.out)

Response Time
(msec)

80 B163 36,776 46.13

112 B233 36,800 84.5

128 B283 36,800 113.11

192 B409 36,816 232.17

256 B571 36,840 444.39

Interfases n.o 19, julio 202486

M. Dorin, S. Montenegro

3.3 ECDH Using Basic Multiply with Hamming Weight and Lookup Table

The final algorithm tested was ECDH using ECC basic multiply with Hamming weight and

lookup table. Table 7 reports STM32 results, Table 8 shows results with the Linux system.

Table 7

ECDH key exchange simulation (Lookup Table) (STM32)

Security
Strength

ECC
Algorithm

Program Size Bytes
(text, data, bss)

Response Time
(msec)

80 B163 37,012 214.78

112 B233 44,492 372.3

128 B283 48,872 495.38

192 B409 71,464 1,005.0

256 B571 111,224 1,755.0

Table 8

ECDH key exchange simulation (Lookup Table) (Linux)

Security
Strength

ECC
Algorithm

Program Size Bytes
(a.out)

Response Time
(msec)

80 B163 37,664 31.49

112 B233 44,832 58.25

128 B283 49,184 78.44

192 B409 75,808 156.57

256 B571 119,584 306.92

3.4 Power Consumption

Power consumption was measured during all of the tests. On Linux, irrespective of algo-

rithm, PowerTOP (Zeitouny & Akturan, 2013) estimated 1.53 Watts of power consumption

and 100 % CPU utilization. On the STM-32 device, it was possible to measure power usage

by putting a meter in-line with the power supply. Power consumption varied between

47.3 mA and 52.9 mA. STM32 Results are shown in Table 9.

Table 9

Power consumption STM32

Security
Strength

ECC – No lookup
(mA.)

ECC – Lookup
(mA.)

RSA
(mA.)

80 47.3 47.4 52.9

112 47.0 46.9 51.0

(continues)

Interfases n.o 19, julio 2024 87

Testing Asymmetric Encryption in a Sustainable Hacking Lab

Security
Strength

ECC – No lookup
(mA.)

ECC – Lookup
(mA.)

RSA
(mA.)

128 47.5 47.3 49.4

192 47.5 47.5 NA

256 47.3 47.8 NA

Setting up the lab hardware was trouble-free, but future work may require perfor-

mance tuning of the STM32 board. Setting up the development systems for the STM32

board and the Linux system went smoothly. While the STM32 and Linux device did run

all the required applications, the STM32 required substantial time to process large

numbers. It was necessary to use quadratic regression to estimate response times for

RSA-7680 and RSA-15360.

When it came to space requirements, the RSA algorithm was expected to be the best

choice given that the basic algorithm is comparatively uncomplicated. However, the ECC

B163 algorithm without a lookup table turned out to be the best choice in terms of space.

This was due to the space required by the large integer math routines needed for imple-

mentation. Hamming ECC with lookup table multiply demanded the most space, with ECC

multiply without the lookup table falling in between.

Considering the required time per operation, ECC using Adaptive Hamming with

lookup was the fastest of all three algorithms. Calculations were approximately 30 %

faster than tests ran without the lookup table on both the STM32 and Linux boards. RSA

was the slowest. ECDH with basic ECC multiply again fell in between. Both elliptic curve

algorithms were faster than the equivalent RSA algorithm for all tests.

In terms of power, there does appear to be a small advantage for using ECC algo-

rithms instead of traditional RSA. However, this advantage is marginal and warrants

further exploration.

4. CONCLUSIONS

This research had multiple goals. The first goal was to determine whether it is possi-

ble to create a practical hacking lab to test security algorithms and provide quality data

at an affordable price. While validating the first goal, a second goal was established to

measure different asymmetric encryption algorithms using the aforementioned hacking

lab. To this end, a hacking lab was created from STM32 boards and discarded tablet PCs.

The selected devices ran the necessary software and performed tests on RSA and two

variants of ECC multiple encryption algorithms.

Developing this hacking lab shows that a practical, inexpensive and sustainable

solution for enhancing security in aerospace environments is possible. Several avenues

for further research are now open. For instance, formally testing key exchanges and

(continued)

Interfases n.o 19, julio 202488

M. Dorin, S. Montenegro

synchronous algorithms could prove essential for future projects. In addition, testing

block versus streaming ciphers for applications specific to RODOS TM/TC could also

prove fruitful. Finally, further research could be directed toward refining the testing

procedures and expanding the scope of the lab’s capabilities. The results demonstrated

in this project indicate a promising future for research on hacking labs.

5 APPENDICES

Appendix A: RODOS

Realtime Onboard Dependable Operating System (RODOS) is a real-time operating

system for embedded systems. It was designed for space applications but is suitable

for any application demanding high dependability. An important feature of RODOS is its

integrated real-time middleware. Developing the control and payload software on top of

middleware provides maximum modularity for developers. Applications/modules can be

developed independently and can be easily swapped without worrying about side effects

since all modules are encapsulated as Building Blocks (BB) and can be accessed by other

resources and access other resources through well-defined interfaces.

RODOS was implemented as a software framework in C++ with an object-oriented

application interface. It is organized into layers: the lowest layer (1) is responsible for

controlling the embedded system hardware (HAL: Hardware abstraction layer). The

next layer (2), the kernel, administers local resources, threads and time. On top of the

kernel is the middleware (layer 3), which enables communication between BBs using a

publisher-subscribe multicast protocol. On top of the middleware sit user-implemented

applications (layer 4), which are distributed software networks of simple BBs. The BBs

API on the top of the middleware is a service-oriented interface. BBs interact by providing

services to other BBs and using services from other BBs.

RODOS can be executed on different hardware platforms (arm, PPC, X86, Spark,

Leon) and on top of Linux or Posix operating systems. It is possible to test and simulate

target applications on various devices using RODOS on top of Linux.

Appendix B: Rivest-Shamir-Adleman (RSA)

RSA encryption is used to secure data transmission, employing a public key for encryp-

tion and a private key for decryption. Using the public key, anyone can encrypt a message.

However, the private key is required to decipher them.

Key generation

1. Choose two large prime numbers, p and q

2. Compute their product, n = pq, which becomes the modulus for both keys.

Interfases n.o 19, julio 2024 89

Testing Asymmetric Encryption in a Sustainable Hacking Lab

3. Calculate the totient function ϕ(n) = (p − 1)(q − 1).

4. Choose an integer e such that 1 < e < ϕ(n) and gcd(e, ϕ(n)) = 1. This becomes the

public exponent.

5. Compute the modular inverse of e modulo ϕ(n) to get d, which is the private

exponent.

 – To encrypt a message M, compute C ≡ Me mod n.

 – To decrypt the ciphertext C, compute M ≡ Cd mod n.

RSA’s security relies on the difficulty of factoring the modulus n into its prime factors.

As long as the prime factors p and q are sufficiently large, factoring n and breaking the

RSA encryption is computationally infeasible (Salami et al., 2023).

Appendix C: Elliptic Curve Cryptography

Elliptic Curve Cryptography (ECC) is a means of performing asymmetric encryption with

faster processing times than other algorithms. ECC leverages the properties of ellip-

tic curves over finite fields and can be used to provide encryption and create digital

signatures. An advantage to ECC is the ability to offer equivalent security to traditional

cryptographic algorithms like RSA albeit with smaller key sizes, making it more effi-

cient for resource-constrained environments. Elliptic curves used in ECC are defined by

equations of the form y2 = x3 + ax + b., where a and b are coefficients chosen based

on specific mathematical properties. These curves exhibit various properties, including

having a group structure defined by point addition and scalar multiplication (Edoh, 2004).

The simplest form of point multiplication is commonly called “the double and add

method” and is almost effortless to implement (Eisentraeger et al., 2002). Algorithm 1

below illustrates how to multiply the scalar value k by a specific point on the curve, P.

Input: Scalar multiplier k, point P

Output: Resultant point Q = kP

Set Q = Φ ; // point-at-infinity

while (k ̸= 0) do

if (k is odd) then

Q = Q + P;

end

P = 2P;

k = k/2;

end

return Q;

Interfases n.o 19, julio 202490

M. Dorin, S. Montenegro

The scalar k is shifted right for each iteration through the loop. Whenever bit zero of

k is one, the current point value is added to the output. The point value P is doubled during

each pass through the loop until k is zero, when the point Q is returned (Eisentraeger et

al., 2002; Anoop, 2007).

Appendix D: Elliptic Curve Diffie-Helman (ECDH) Algorithm

1. Alice selects a (secret) random natural number a, calculates P = a * G. P is sent

to Bob.

 a is Alice’s private key.

 P is Alice’s public key.

2. Bob selects a (secret) random natural number b, calculates Q = b * G. Q is sent

to Alice.

 b is Bob’s private key.

 Q is Bob’s public key.

3. Alice calculates S = a * Q = a * (b * G).

4. Bob calculates T = b * P = b * (a * G).

 T = S = the new shared secret.

 More information can be found in RFC4492 (Blake-Wilson et al., 2006)

 and Kokke (2017).

Appendix E: Elliptic Curve Example Source Code

#include “ecdh.h”

void gf2point_hamming_and_lookup_mutliply(gf2elem_t x,

gf2elem_t y, const scalar_t exp)

{

scalar_t one = {1}; //scalar value one, used for shifting

scalar_t nextPowerOfTwoAbove = {0};

scalar_t result = {0};

int numberofHighestOneBit;

numberofHighestOneBit = bitvec_degree(exp);

/* bitvec_degree holds number of the highest one-bit + 1 */

bitvec_lshift(nextPowerOfTwoAbove, one, numberofHighestOneBit);

int hammingWeight = hamming_weight(exp);

bigint_subtract(result, nextPowerOfTwoAbove, exp);

Interfases n.o 19, julio 2024 91

Testing Asymmetric Encryption in a Sustainable Hacking Lab

int hammingWight2 = hamming_weight(result);

if (hammingWeight < hammingWight2) {

 gf2point_multiply_with_lookup(x, y, exp);

} else {

gf2point_multiply_with_lookup(x, y, result);

gf2field_add(y,x,y);

gf2point_add(x, y, Tx[numberofHighestOneBit+1],

Ty[numberofHighestOneBit+1]);

}

}

void gf2point_multiply_with_lookup(gf2elem_t x, gf2elem_t y,

 const scalar_t exp)

{

int index = 0;

int currentBit = 0x1;

int currentByte = 0;

for (index = 1; index < ECC_PRV_KEY_SIZE * 8; index++) {

if (exp[currentByte] & currentBit) {

 gf2point_add(x, y,Tx[index], Ty[index]);

}

currentBit =currentBit << 1;

if (currentBit == 0x00000000)

{

 currentBit = 0x1;

 currentByte+=1;

}

}

}

Note. Requires tiny-ECDH-c from Kokke (2017).

Interfases n.o 19, julio 202492

M. Dorin, S. Montenegro

REFERENCES

Anoop, M. S. (2007). Elliptic curve cryptography. An implementation guide. https://

informatika.stei.itb.ac.id/~rinaldi.munir/Kriptografi/2014-2015/ECC_Tut_v1_0.

pdf

BigDigits multiple-precision arithmetic source code (s/f). DI Management. https://www.

di-mgt.com.au/bigdigits.html

Blake-Wilson, S., Nystrom, M., Hopwood, D., Mikkelsen, J. & Wright, T. (2006). Network

working group. https://www.rfc-editor.org/pdfrfc/rfc4366.txt.pdf

Brown, M., Hankerson, D., López, J. & Menezes, A. (2001). Software implementation of the

NIST elliptic curves over prime fields. In D. Naccache (Ed.), Topics in Cryptology —

CT-RSA 2001. (pp. 250-265). Springer. https://doi.org/10.1007/3-540-45353-9_19

Chang, C-C., Kuo, Y-T. & Lin, C-H. (2003). Fast algorithms for common-multiplicand

multiplication and exponentiation by performing complements. Proceedings

17th International Conference on Advanced Information Networking and

Applications (AINA) (pp. 807-811). IEEE Computer Society. https://doi.org/10.1109/

AINA.2003.1193005

Dorin, M. (2009). Implementation of standards based public key cryptography for small processor

based systems [Master’s thesis] Metropolitan State University, St. Paul, Minnesota.

Edoh, K. D. (2004). Elliptic curve cryptography: Java implementation. Proceedings of the

1st Annual Conference on Information Security Curriculum Development (pp. 88-93).

Association for Computing Machinery. https://doi.org/10.1145/1059524.1059542

Eisentraeger, K., Lauter, K. & Montgomery, P. L. (2002). An efficient procedure to double

and add points on an elliptic curve. Cryptology ePrint Archive, paper 2002/112.

https://eprint.iacr.org/2002/112.

Fenlason, J. & Stallman, R. (1998). The GNU Profiler. https://ftp.gnu.org/old-gnu/Manuals/

gprof-2.9.1/html_mono/gprof.html

Garfinkel, T. & Rosenblum, M. (2003). A virtual machine introspection based architecture

for intrusion detection. Network and Distributed System Security Symposium, 3.

https://suif.stanford.edu/papers/vmi-ndss03.pdf

Guarda, T., Orozco, W., Augusto, M. F., Morillo, G., Arévalo Navarrete, S. & Mota Pinto,

F. (2016). Penetration testing on virtual environments. In: Proceedings of the 4th

International Conference on Information and Network Security (ICINS ’16) (pp. 9-12).

https://doi.org/10.1145/3026724.3026728

Hamming, R. W. (1970). On the distribution of numbers. Bell System Technical Journal,

49(8), 1609-1625. https://doi.org/10.1002/j.1538-7305.1970.tb04281.x

Interfases n.o 19, julio 2024 93

Testing Asymmetric Encryption in a Sustainable Hacking Lab

Herpel, H-J., Kerep, M., Montano, G., Eckstein, K., Schön, M. & Krutak, A. (2016). MILS

compliant software architecture for satellites. MILS@HiPEAC. https://core.ac.uk/

download/pdf/144785917.pdf

Hoang, T. M., Duong, T. Q., Tuan, H. D., Lambotharan, S. & Hanzo, L. (2021). Physical layer

security: detection of active eavesdropping attacks by support vector machines.

IEEE Access, 9, 31595-31607. https://doi.org/10.1109/ACCESS.2021.3059648

Huang, X., Shah, P. G. & Sharma, D. (2010). Minimizing hamming weight based on 1’s

complement of binary numbers over GF (2m)). 12th International Conference

on Advanced Communication Technology (ICACT), 1226-1230. https://

researchsystem.canberra.edu.au/ws/portalfiles/portal/28927012/full_text_

published_15.pdf

Kodali, R. K. & Budwal, H. S. (2013). High performance scalar multiplication for ECC. 2013

International Conference on Computer Communication and Informatics (pp. 1-4).

https://doi.org/10.1109/ICCCI.2013.6466286

Kokke. (2017). Small and portable implementation of ECDH in C. https://github.com/

kokke/tiny-ECDH-c

Koshelev, D. (2024), Some remarks on how to hash faster onto elliptic curves. Journal of

Computer Virology and Hacking Techniques. (2024). https://doi.org/10.1007/

s11416-024-00514-4

Lee, D. H., Kim, C. M., Song, H. S., Lee, Y. H. & Chung, W. S. (2023). Simulation-based

cybersecurity testing and evaluation method for connected car V2X application

using virtual machine. Sensors, 23(3), 1421. https://doi.org/10.3390/s23031421

Lenstra, A. (2006). Key lengths contribution to the handbook of information security. https://

blkcipher.pl/assets/pdfs/NPDF-32.pdf

López, D. & Fraga, E. (2016). Tm/tc encryption system. In: 14th International Conference

on Space Operations, Article 2330. American Institute of Aeronautics and

Astronautics. https://arc.aiaa.org/doi/10.2514/6.2016-2330

Maral, G., Bousquet, M. & Sun, Z. (2020). Satellite communications systems: systems,

techniques and technology. Wiley.

Mitchell, J. N. (1962). Computer multiplication and division using binary logarithms. IRE

Transactions on Electronic Computers, EC-11(4), 512–517. https://doi.org/10.1109/

TEC.1962.5219391

Nascimento, E., López, J. & Dahab, R. (2015). Efficient and secure elliptic curve cryptography

for 8-bit AVR microcontrollers. In R. Chakraborty, P. Schwabe & J. Solworth (Eds.)

Security, privacy and applied cryptography engineering. Lecture notes in computer

science, 9354, pp. 289-309. Springer. https://doi.org/10.1007/978-3-319-24126-5_17

Interfases n.o 19, julio 202494

M. Dorin, S. Montenegro

Nozaki, H., Motoyama, M., Shimbo, A. & Kawamura, S. (2001). Implementation of RSA

algorithm based on RNS Montgomery multiplication. In C. K. Koc, D. Naccache

& C. Paar (Eds.), Cryptographic hardware and embedded systems—CHES

2001. Lecture Notes in Computer Science, 2162, 364-376. Springer. https://doi.

org/10.1007/3-540-44709-1_30

Opus IVS. (2024). Opus IVS.About Us https://www.opusivs.com/about/

Pesch, R. H., Osier, J. M. & Support, C. (1993). The Gnu binary utilities. https://web.mit.edu/

gnu/doc/html/binutils_toc.html

Salami, Y., Khajehvand, V. & Zeinali, E. (2023). Cryptographic algorithms: a review of the

literature, weaknesses and open challenges. Journal of Computer & Robotics,

16(2), 63-115. https://doi.org/10.22094/jcr.2023.1983496.1298

Saltzer, J. H. & Schroeder, M. D. (1975). The protection of information in computer

systems. Proceedings of the IEEE, 63(9), 1278–1308. https://doi.org/10.1109/

PROC.1975.9939

Sciglimpaglia Jr., R. J. (1991). Computer hacking: a global offense. Pace International Law

Review, 3(1), 204-266. https://doi.org/10.58948/2331-3536.1020

STMicroelectronics. (2024a). STM32F4DISCOVERY - Discovery kit with STM32F407VG

MCU. https://www.st.com/en/evaluation-tools/stm32f4discovery.html

STMicroelectronics. (2024b). STM32CubeIDE - Integrated development environment for

STM32. https://www.st.com/en/development-tools/stm32cubeide.html

The Linux Mint Team. (2024a), Linux Mint - FAQ. Linux Mark Institute. https://linuxmint.

com/faq.php

The Linux Mint Team. (2024b), Linux Mint - Download. Linux Mark Institute. https://www.

linuxmint.com/download.php

Zeitouny, C. & Akturan, C. (2013). Linux* power efficiency analysis methods. A look at power

efficiency analysis methods under Linux environments. Intel corporation. https://

www.intel.com/content/dam/develop/external/us/en/documents/linux-power-

efficiency-analysis-methods-2.pdf

Zhou, X. & Tang, X. (2011). Research and implementation of RSA algorithm for encryption

and decryption. Proceedings of 2011 6th international forum on strategic technology

(pp. 1118-1121). https://doi.org/10.1109/IFOST.2011.6021216

