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In order to facilitate 3D object processing, it is common to use high-level representations 
such as local descriptors that are usually computed using defined neighborhoods. K-rings, 
a technique to define them, is widely used by several methods. In this work, we propose a 
model for the distributed computation of local descriptors over 3D triangular meshes, using 
the concept of k-rings. In our experiments, we measure the performance of our model on 
huge meshes, evaluating the speedup, the scalability, and the descriptor computation time. 
We show the optimal configuration of our model for the cluster we implemented and the 
linear growth of computation time regarding the mesh size and the number of rings. We 
used the Harris response, which describes the saliency of the object, for our tests.
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Resumen

Un modelo distribuido para calcular descriptores locales de malla 3D  
basados en k-rings

Para facilitar el procesamiento de objetos 3D, es común utilizar representaciones de 
alto nivel, como los descriptores locales que generalmente se calculan utilizando vecin-
darios definidos. K-rings es una técnica para definirlos y es ampliamente utilizada por 
varios métodos. En este trabajo, proponemos un modelo para el cálculo distribuido 
de descriptores locales sobre mallas triangulares 3D, utilizando el concepto de anillos 
k. En nuestros experimentos, medimos el rendimiento de nuestro modelo en mallas 
enormes, evaluando la aceleración, la escalabilidad y el tiempo de cálculo del descriptor. 
Mostramos la configuración óptima de nuestro modelo para el clúster que implemen-
tamos y el crecimiento lineal del tiempo de cálculo con respecto al tamaño de la malla 
y el número de anillos. Usamos la respuesta de Harris, que describe la prominencia del 
objeto, para nuestras pruebas.

PALABRAS CLAVE: descriptor local 3D / procesamiento geométrico / computación distribuida 
/ mallas grandes
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1.  INTRODUCTION

3D repositories are growing rapidly (Gao et al., 2015) and, consequently, there are many 

techniques for 3D data acquisition (e.g. 3D modeling, 3D scanners, 3D reconstruction, depth-

sensing cameras, etc.). In this context, processing this type of data is an important task for 

computer scientists. For instance, areas such as videogames, medicine, archeology, biology, 

engineering, physics, and others use this kind of data for real object representation. There 

are some tasks that are very important for 3D data analysis: registering (Pavlakos et al., 

2018; Maquart et al., 2021; O’ Sullivan et al., 2022; Van Kaick et al., 2011; Li et al., 2015), 

symmetry detection (Mitra et al., 2013; Areias & Rabczuk, 2017), segmentation (Figueiredo 

et al., 2021; Zhou et al., 2017), sampling and compression. These tasks depend on the repre-

sentation of the object; a 3D object can be represented by point clouds, polygon meshes, 

polygon soups, connectivity graphs, volumetric pixels (voxels), etcetera (low-level repre-

sentations). To facilitate processing, it is common to use high-level representations such as 

descriptors, graphs, skeletons, key points, components, etc.

In this paper, we focus on local descriptor representation. A local descriptor is 

usually defined on each atomic structure of low-level representations; we use polygon 

mesh representations and their vertices as atomic structures (i.e., we work on trian-

gular meshes). Usually, when computing local descriptors, it is necessary to establish 

the neighborhood of each vertex of the mesh. This neighborhood allows us to define local 

features. For example, if we want to define the curvature of a single vertex, it is not neces-

sary to know the distribution of all vertices. Gelfand et al. (2005) proposed the Integral 

Volume Descriptor, which evaluates the curvature of a region of the surface immersed in 

a sphere (determines the neighborhood) of a given radius. Lee et al. (2005) proposed a 

descriptor based on the mean curvature. Gaussian filters are used in different scales to 

obtain the saliency value of each vertex. They determine neighborhoods using geodesic 

or Euclidean distance on the mesh. Then, Castellani et al. (2008) applied the Gaussian 

filter directly to the points of the object instead of the values.

Another way to determine a neighborhood is using the concept of rings. Zaharescu et 

al. (2009) proposed a descriptor based on the discrete curvature; they defined neighbor-

hoods to obtain the approximate curvature, these neighborhoods were composed by the 

set of the k-level adjacent vertices of each vertex. Sipiran and Bustos (2011) implemented 

a technique called Harris 3D, which is based on the corner detection technique proposed 

by Harris and Stephens (Harris & Stephens, 1988).

They compute the Harris response for each point regarding a locality conformed by 

different rings; also, they approximate a continuous surface for this locality and trans-

form it using Principal Component Analysis (PCA) to address rotation invariance. The 

saliency is computed evaluating the derivatives on the surface.
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It is possible to generate high definition meshes with millions of vertices. For 

example, the digital Michelangelo project (Levoy et al., 2000), has meshes with more than 

900 million faces. Using a sequential model to process large meshes involves conside-

rable computation time. Multi-thread and GPU based algorithms are very useful when we 

want to speed up this task. The other problem we want to solve when working with large 

meshes is the insufficient memory space. Sometimes this problem is addressed using 

compact data structures for space optimization (Chen et al., 2009; Zamolo et al., 2022; 

Herath et al., 2020; Cignoni et al., 2003; Aleardi et al., 2005; Gurung et al., 2011; Luffel et 

al., 2014; Gurung et al., 2013; Rocca et al., 2011), but it decreases processing speed.

Distributed data processing is a computer-networking method in which multiple 

computers across different locations share computer-processing capability with all 

connected systems. That is the reason why distributed models have been widely used in 

different areas of computer science, taking advantage of the reduction of processing time 

when working on a distributed manner. The distributed paradigm has been addressed 

in many works concerning image processing (Le Tien et al., 2021; Verma et al., 2018; 

Squyres et al., 2000; Prajapati & Vij, 2011; Warn et al., 2009), video processing (Pereira 

et al., 2010), molecular data analysis (Gurung et al., 2011), etc. In the case of 3D data 

processing, there are multiple frameworks for specific tasks. Balman (2006) proposed a 

distributed method for non-uniform triangular mesh refinement. Vo et al. (2011) used a 

MapReduce model for 3D data visualization. Cabiddu and Attene (2015) proposed a web-

based system for the generally distributed processing of triangular meshes.

Determining the locality or neighborhood is commonly associated with the k nearest 

neighbors (kNN) problem. Sankaranarayanan et al. (2007) proposed an extension of their 

previous work for distributed processing; they used large point clouds for their experi-

ments and calculated the nearest neighbors using Euclidean distance. We can use this 

to estimate a neighborhood, but the problem of a Euclidean range search is that we can 

get wrong results if two different parts of the mesh are very close regarding this metric 

and very far following the topological structure. That is why it is important to define a 

geodesic metric. The easiest way to discretize it is using adjacency level distance. This 

will be explained later (k-rings).

In this work, we propose a distributed model for computing 3D triangular mesh local 

descriptors based on k-rings. We consider a multi-process architecture to address para-

llel processing and a distributed disk storage for insufficient memory capacity problems. 

We implemented this model using MPI and applied the Harris response descriptor on it 

(Sipiran & Bustos, 2011). We conducted several experiments to obtain an optimal configu-

ration for our cluster. Also, we evaluated the speedup, the scalability, and the descriptor 

computation time.
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The paper is organized as follows. In section 2, we explain how to represent a 3D 

object, how to define a descriptor, how to define a neighborhood, and how the Harris 

response works. The proposed model is explained in section 3; each step is presented 

in detail here. We explain our experiments and show our results in section 4. Finally, in 

section 5, we present our conclusions and future work.

2. BACKGROUND

A 3D object can be formally represented as a 2-manifold. Discretizing, we can represent 

it as a triangular mesh. A triangular mesh is composed by a set of vertices  and a set 

of faces (triangles) . The faces define the connectivity of the vertices, this representa-

tion preserves geometric and topological features. A point-wise descriptor is a function 

, that describes all the object; these kinds of descriptors work independently on each 

vertex and its locality. First, we must compute the neighborhood and then the descriptor 

values. Each neighborhood can be defined using the concept of k-rings (an example of 

this concept is shown in figure 1, used by Sipiran and Bustos (2011).

Figure 1

K-rings

Note. White: evaluated vertex. Blue: 1-ring. Red: 2-ring. Green: 3-ring. Adapted from Harris 3D: a robust 
extension of the Harris operator for interest point detection on 3D meshes by I. Sipiran & B. Bustos, 2011, The 

Visual Computer, 27 (https://link.springer.com/content/pdf/10.1007/s00371-011-0610-y.pdf)

A k-ring is defined as follows:

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑘𝑘𝑘𝑘(𝑝𝑝𝑝𝑝) = {𝑝𝑝𝑝𝑝′𝜖𝜖𝜖𝜖 𝑀𝑀𝑀𝑀/|minimun\_path(𝑝𝑝𝑝𝑝,𝑝𝑝𝑝𝑝′)| =  𝑘𝑘𝑘𝑘}  (1) 

 

 

 

𝑟𝑟𝑟𝑟𝑛𝑛𝑛𝑛𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑟𝑟𝑟𝑟ℎ𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑜𝑜𝑜𝑜𝑘𝑘𝑘𝑘(𝑝𝑝𝑝𝑝) = ⋃ 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖𝑖𝑖(𝑝𝑝𝑝𝑝)𝑘𝑘𝑘𝑘
𝑖𝑖𝑖𝑖=1   (2) 

 

𝑓𝑓𝑓𝑓(𝑥𝑥𝑥𝑥,𝑦𝑦𝑦𝑦) = 𝑝𝑝𝑝𝑝1
2
𝑥𝑥𝑥𝑥2 + 𝑝𝑝𝑝𝑝2𝑥𝑥𝑥𝑥𝑦𝑦𝑦𝑦 + 𝑝𝑝𝑝𝑝3

2
𝑦𝑦𝑦𝑦2 + 𝑝𝑝𝑝𝑝4𝑥𝑥𝑥𝑥 + 𝑝𝑝𝑝𝑝5𝑦𝑦𝑦𝑦 + 𝑝𝑝𝑝𝑝6   (3) 

 

 

𝑓𝑓𝑓𝑓𝑥𝑥𝑥𝑥 = 𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿(𝑥𝑥𝑥𝑥,𝑦𝑦𝑦𝑦)
𝛿𝛿𝛿𝛿𝑥𝑥𝑥𝑥

     (4) 

 

𝑓𝑓𝑓𝑓𝑦𝑦𝑦𝑦 = 𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿(𝑥𝑥𝑥𝑥,𝑦𝑦𝑦𝑦)
𝛿𝛿𝛿𝛿𝑦𝑦𝑦𝑦

     (5) 

 

 

𝐴𝐴𝐴𝐴 = 𝑝𝑝𝑝𝑝42 + 𝑝𝑝𝑝𝑝12 + 𝑝𝑝𝑝𝑝22    (6) 

 

𝐵𝐵𝐵𝐵 = 𝑝𝑝𝑝𝑝52 + 𝑝𝑝𝑝𝑝22 + 𝑝𝑝𝑝𝑝32    (7) 

 

𝐶𝐶𝐶𝐶 = 𝑝𝑝𝑝𝑝4𝑝𝑝𝑝𝑝5 + 2𝑝𝑝𝑝𝑝1𝑝𝑝𝑝𝑝2 + 2𝑝𝑝𝑝𝑝2𝑝𝑝𝑝𝑝3   (8) 

 

 

 

 

𝐸𝐸𝐸𝐸 = �𝐴𝐴𝐴𝐴 𝐶𝐶𝐶𝐶
𝐶𝐶𝐶𝐶 𝐵𝐵𝐵𝐵�    (10) 

 

 

 

ℎ = det(𝐸𝐸𝐸𝐸) − 𝑞𝑞𝑞𝑞(𝑡𝑡𝑡𝑡𝑟𝑟𝑟𝑟(𝐸𝐸𝐸𝐸))2   (11) 

 

We assume that the length of the edges is one. A neighborhood with radius equal to k 

is the set formed by the union of all rings with radius . Formally we have:
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2.1 Harris 3D

In our experiments, we use the Harris response to get our results. Harris response is 

a local point-wise descriptor that uses neighborhoods to get the saliency value of each 

vertex. Given a neighborhood N  of a vertex , defined using the concept of k-rings, it 

is possible to approximate a surface. To address rotation invariance, a fitting plane is 

computed using Principal Component Analysis (PCA). The neighborhood is rotated with 

respect to the normal of this plane. Sipiran & Bustos (2011) fit a quadratic surface to the 

set of transformed vertices. This surface has the following form:

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑘𝑘𝑘𝑘(𝑝𝑝𝑝𝑝) = {𝑝𝑝𝑝𝑝′𝜖𝜖𝜖𝜖 𝑀𝑀𝑀𝑀/|minimun\_path(𝑝𝑝𝑝𝑝,𝑝𝑝𝑝𝑝′)| =  𝑘𝑘𝑘𝑘}  (1) 
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Then, with this continuous surface, the derivatives can be calculated on the vertex  

by:
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ℎ = det(𝐸𝐸𝐸𝐸) − 𝑞𝑞𝑞𝑞(𝑡𝑡𝑡𝑡𝑟𝑟𝑟𝑟(𝐸𝐸𝐸𝐸))2   (11) 

 

With these terms, the matrix E is defined:

𝐸𝐸𝐸𝐸 = �𝐴𝐴𝐴𝐴 𝐶𝐶𝐶𝐶
𝐶𝐶𝐶𝐶 𝐵𝐵𝐵𝐵�    (9) 

 

 

 

ℎ = det(𝐸𝐸𝐸𝐸) − 𝑞𝑞𝑞𝑞(𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝐸𝐸𝐸𝐸))2   (10) 

 
 

The Harris response is computed by:

𝐸𝐸𝐸𝐸 = �𝐴𝐴𝐴𝐴 𝐶𝐶𝐶𝐶
𝐶𝐶𝐶𝐶 𝐵𝐵𝐵𝐵�    (9) 

 

 

 

ℎ = det(𝐸𝐸𝐸𝐸) − 𝑞𝑞𝑞𝑞(𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝐸𝐸𝐸𝐸))2   (10) 

 
 

Where q is a constant.



Franci Suni-Lopez, Jan Hurtado, Alejandra Márquez, Leonardo Guzmán

INTERFASES n.° 15 // julio 2022 // ISSN 1993-4912 44

3.  DISTRIBUTED MODEL

In this paper, we introduce a distributed model for 3D mesh local descriptor computa-

tion. The cluster executes in parallel the same tasks with different data and different 

parameters. First, we define a neighborhood based on k-rings; using this technique, it is 

necessary to find different levels of adjacency (0-k levels). The adjacent vertices, which 

make up the neighborhood, are necessary to compute the descriptor.

Figure 2

Workflow of the proposed algorithm

Note. Adapted from Harris 3D: a robust extension of the Harris operator for interest point detection on 3D 
meshes, by I. Sipiran & B. Bustos, 2011, The Visual Computer, 27, (https://link.springer.com/content/
pdf/10.1007/s00371-011-0610-y.pdf)

We address two problems: insufficient memory capacity and parallel processing. 

To solve the first one, our method uses disk I/O operations for final and temporal data, 

which is helpful for partial results storage. These operations are executed in parallel, on 

each node of the cluster. The second one is solved using a multi-process architecture. 

Our model consists of seven steps. The input is a 3D triangular mesh and the output, its 

respective descriptor. 1) Mesh replication: distributes the mesh file. 2) Vertex partitio-

ning: regular partitioning using appearance order. 3) Coordinate storage and replication: 

extracts coordinates from mesh file and replicates them on each cluster node. 4) 0-ring 

storage: the 0-ring is integrated by the evaluated vertex. 5) 1-ring computation and repli-

cation: the 1-ring is integrated by the adjacent vertices, and it is replicated on all the 

cluster. 6) K-ring computation: the k-ring is computed using the (k-1)-ring, the (k-2)-ring 

and the 1-ring. 7) Descriptor computation and storage: using the computed rings we can 

load the coordinates for descriptor computation. The workflow of our model is shown in 

figure 2. 
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The mesh replication step replicates the mesh input file on each node of the cluster 

(a node can have multiple processes). Each process reads the same file, which has a set 

of vertices (with their respective coordinates) and a set of faces (triangles). The vertices 

are not sorted or clustered, so we can’t split them by proximity. In the next step, the set 

of vertices is partitioned according to their order of appearance. These partitions are 

assigned to each process. Then, we must store two types of data: global data and local 

data. The global data is replicated on each node of the cluster, and the local data is stored 

in the corresponding node. 

The 0-ring and the coordinates can be loaded at the same time. In a typical mesh 

file, the coordinates of each vertex are located at the top. These coordinates are repli-

cated (global data) and will be useful for descriptor computation. The 0-ring is integrated 

by the vertices that have 0 distance from the source, therefore the 0-ring is conformed 

only by the evaluated vertex. In the mesh file each triangle is represented by the indices 

of the three vertices that conform it. We use that information to compute the 1-ring of 

each vertex and then replicate this information all over the cluster (global data). This 

ring is replicated because we have to access it several times for the computation of the 

following rings. 

In our implementation, we compute and store the coordinates, the 0-ring and the 

1-ring before doing the replication process. Each node of the cluster generates files 

for their corresponding partitions. We execute one process for each partition and each 

process is composed by sequential steps depending on the memory usage we want. 

Support data structures are used to optimize the computation time. Each node executes 

its processes in parallel. When this task is finished, the coordinates and the 1-ring are 

replicated all over the cluster. 

The next step is the computation of the k-rings. We make use of the 1-ring to obtain 

the adjacent vertices of a specific vertex. If we are computing the k-ring, we need to 

access to the (k-1)-ring and (k-2)-ring. We use the first one in order to get the adjacent 

vertices of the previous ring (external ring). And the second one because the adjacent 

vertices we select should not be in the rings that have already been computed. We use 

data structures to speed up this step. As in the previous steps, we assign a process for 

each partition and use sequential steps depending on the memory usage. We compute 

the k-rings sequentially regarding the partitions. Figure 3 shows in detail the algorithm 

used in this step .
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Figure 3

Algorithm of computation of k-ring

 
Note. Adapted from Harris 3D: a robust extension of the Harris operator for interest point detection on 3D 
meshes by I. Sipiran & B. Bustos, 2011, The Visual Computer, 27, (https://link.springer.com/content/
pdf/10.1007/s00371-011-0610-y.pdf)

Given the set of rings and the coordinates, we can define a neighborhood and the 

descriptor values. In the same way as in a single ring computation of the k-rings, we 

load the coordinates instead of the adjacent vertices. For each partition, the correspon-

ding descriptor is computed regarding the vertices involved. The result consists of files 

storing the descriptor values of each vertex of the mesh.

4.  EXPERIMENTS AND RESULTS 

We implemented a cluster of ten computers, each with the following specifications: 

Ubuntu 14.04 LTS OS, Intel Core i7-4770 CPU @ 3.40GHz x8 processor architecture and 

8 Gb of RAM. We did several tests to obtain an optimal configuration of the number of 

processes and steps. For testing reasons, we generated uniform plane meshes of diffe-

rent sizes. Also, we used 3D models which were directly obtained from the Stanford 3D 

Scanning Repository1, the AIM@SHAPE Shape Repository2 and the GIT Large Geometry 

Models Archive3. These models are shown in figure 4.
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Figure 4

Models used for the experiments

Note. The models were obtained from the Stanford 3D Scanning Repository, the AIM@SHAPE Shape 
Repository, and the GIT Large Geometry Models Archive. (a) Skeleton Hand. (b) Dragon. (c) Happy Buddha. 
(d) Turbine Blade. (e) Neptune. (f) Lucy.
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Figure 5

Execution time and speed up obtained over a mesh with 16 million vertices using different number 
of processes
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Note. Blue: total time/speedup of k-rings computation. Red: time/speedup of coordinates and 
(0,1)-ring computation. Green: time/speedup of (2-k)-ring computation.

4.1 Speedup

First, using a mesh conformed by 16 million vertices we calculated the execution time 

of the coordinates and (0-k)-ring computation for different number of processes. This 

task is the critical part in our implementation. In the case of the coordinates and (0,1)-

ring computation, we obtained better results using one step for all number of processes 

except when we used only one. This occurred since we didn’t have enough memory capa-

city. For the (2-k)-ring computation we calculated an optimal number of steps depending 

on the number of processes used. Here we did not consider the computation time of 

the descriptor because the process of extracting the neighborhoods is very similar to a 

single ring computation and calculating the values for each neighborhood will depend 

on the descriptor we choose. In table 1 we show the total and partial execution times 

for different number of processes. Also, we show the speedup obtained regarding the 

sequential implementation. In figure 5 (a) and 5 (b) we show the graphs obtained from 

the execution time values and the speedup values respectively. The optimal number of 

processes for the total computation time is 80. But in the case of coordinates and (0,1)-

ring computation, the optimal number of processes is 20. This occurs because these 

steps don’t have too much processing cost.
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4.2 Scalability

Using the optimal number of processes (80), we tested the task mentioned on the previous 

section on plane regular meshes of different sizes. The number of rings that we calcu-

lated was 18. The number of steps we used were selected according to the size of the 

mesh. In table 2 we show the number of vertices and the size of the meshes, the number 

of steps of each process, the size of the computed data (rings and coordinates), and the 

total computation time. In figure 6 (a) we show the respective behavior. The graph shows 

that the growth is linear with respect to the number of vertices.

Figure 6

K-rings computation time using plane meshes of different sizes
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Note. (b) shows the computation time of k-rings with 16 million of vertices and 80 processes.

We calculated the computation time for each ring over a regular plane mesh of 

16 million vertices, using 80 processes. In table 3 we show the results from 2-Ring to 

18-ring, and in figure 6(b) its respective graph. The growth regarding the number of rings 

is also linear.
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Table 1

Results describing the execution time and speedup obtained using different number of processes 
over a mesh with 16 million vertices

Proc. Steps Coords + (0,1)- ring (s) (2-18)-ring (s) Total (s) Speedup

1 25 130,083 50 849,972 50 980,055 1

2 18 43,023 7203,385 7246,408 7,035

5 16 44,918 3093,867 3138,785 16,242

10 15 29,118 1448,57 1477,688 34,5

20 14 17,057 931,066 948,123 53,769

40 14 31,782 588,037 619,819 82,25

80 13 34,834 371,161 405,995 125,568

120 11 63,030 385,741 448,771 113,559

Table 2

K-ring computation time using plane meshes of different sizes 

Vertices Size (GB) Steps Data (GB) Time (s)

1 million 0,052 1 0,666 28,404

2 million 0,109 2 1,5 52,492

4 million 0,224 4 3,1 90,751

8 million 0,454 7 4,8 151,881

16 million 0,948 13 14 405,995

32 million 2 20 28 1090,801

64 million 4 30 56 2744,154

Table 3

Computation time in seconds of (1-18) – ring using 80 processes in a 16 million vertex plane mesh

Ring Time (s)  Ring Time (s) Ring Time (s)

2-ring 4,856 8-ring 19,367 14-ring 33,587

3-ring 6,927 9-ring 20,677 15-ring 33,567

4-ring 9,649 10-ring 23,472 16-ring 36,394

5-ring 11,523 11-ring 24,840 17-ring 41,592

6-ring 14,564 12-ring 27,583 18-ring 42,052

7-ring 15,557 13-ring 29,920

4.3 Descriptor

In this test we calculated the execution times for all the tasks involved in the descriptor 

computation. We used the Harris response as a descriptor, which is in Sipiran & Bustos, 

(2011).
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Table 4

K-ring based descriptor computation

Mesh # Vertices  Size

(GB)

Replication 
(s)

(2-10) – 

ring (s)

Descriptor 
(s)

Data 
size

(GB)

Total (s)

Skeleton

Hand

327 323 0,020 1,084 3,800 1,101 0,091 9,7

Dragon 437 645 0,029 1,504 4,109 1,939 0,153 14,449

Happy

Buddha

543 652 0,037 2,082 4,499 2,469 0,199 17,689

Turbine

Blade

882 954 0,037 2,267 5,771 2,806 0,254 19,74

Neptune 2 003 932 0,150 6,736 10,445 8,774 0,626 55,552

Lucy 1 402 7872 0,969 36,641 65,878 45,061 4,9 285,682

Plane 
(16)

16 000 000 0,948 34,834 72,603 34.5 4,8 238,607

Plane 
(32)

32 001 649 1,957 68,781 156,604 140,193 10,5 582,54

Plane 
(64)

64 000 000 3,977 135,969 324,011 419,891 21,5 1533,345

The neighborhoods are conformed by rings with k ≤ 10. In the test we used six meshes 

obtained from the repositories we previously mentioned, and three plane meshes with 

different sizes. The results we obtained are shown in table 4. We show the name of the 

mesh, the number of vertices, the size of the mesh, the coordinates and (0,1)-ring execu-

tion time, the replication time, the (2-10)-ring execution time, the descriptor computation 

time, the size of the generated data, and the total time of the whole computation. Our 

implementation works better when the partition vertices are near, since less disk opera-

tions are needed to obtain the adjacent vertices and the coordinates.
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5.  CONCLUSION AND FUTURE WORK

The main contribution of this paper is the distributed computation of 3D mesh local 

descriptors based on the concept of k-rings. In our implementation, we work with three 

main resources: processors, RAM and hard disk. We have parameters that allow us to fix 

the usage of these resources. Getting an optimal configuration will also depend on the 

cluster features. Automating the selection of these parameters is a future work.

The partitioning method used on this model is very simple (appearance order), Using 

a smart partitioning, such as a Euclidean distance-based partitioning, would optimize the 

execution time. In that case, a preprocessing step is needed in order to obtain balanced 

partitions.

We showed that our method is scalable, so increasing the cluster capacity will 

decrease the execution time. Also, there are some operations that can be executed using 

GPU. This will reduce considerably the execution time of the descriptor computation. We 

can extend our model for the computation of local descriptors over point clouds. In that 

case, we would have to use spatial data structures and a Euclidean distance-based parti-

tioning with overlapping.
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