Tecnología

Fredy Huayla S.

Ingemarquímico por la Universidad Nacional de Ingeniería. Máster en Ingeniería Química por la Universidad de Cambridge (UNICAM), Inglaterra. Es asesor en el diagnóstico y desarrollo en el proceso de industrialización de la cáscara de frutilla, en el centro de investigación INIAC, Chiclayo.
Extracción de productos naturales con dióxido de carbono supercrítico como solvente

Fredy Huayta S.

Ingeniero químico por la Universidad Nacional de Ingeniería. Máster en ingeniería química por la Universidad de Campinas (UNICAMP), Brasil. Es asesor en el diagnóstico y perspectiva en el proceso de industrialización de la cáscara de limón, en el centro de investigación Huaral Progreso.

El presente proyecto contempla el desenvolvimiento científico de una tecnología promisoria para la extracción de productos naturales y alimenticios. El proceso de extracción con fluido supercrítico es realizado con dióxido de carbono. Con el desarrollo técnico-científico de esta tecnología se consigue preservar el ecosistema y obtener productos finales atrayentes y aceptables, sin residuos perjudiciales para la salud del ser humano.
1. Introducción

Existen factores técnicos, económicos, mercadológicos, estilo de vida nutricionales, dietéticos y ambientales, que justifican las intensivas investigaciones en la extracción de productos naturales y alimenticios con fluido supercrítico como solvente, lo que se presenta como una alternativa atrayente.

En la actualidad se cuenta con una variedad de tecnologías que conducen a la extracción de productos naturales y alimenticios que son procesos ya conocidos como: destilación por arrastre de vapor, extracción con solventes químicos comunes (hexano, éter etílico, cloroformo, entre otros).

Los principales problemas para mejorar el desenvolvimiento de cada uno de estos procesos está relacionado con la calidad del producto, costo y selectividad de operación. La destilación por arrastre de vapor es más utilizado por ser un proceso conocido y usado en muchas industrias, pues requiere equipos convencionales. Lo inconveniente son los daños causados a las propiedades funcionales de las proteínas y otros constituyentes de los productos extraídos. En la extracción con solventes químicos siempre es necesaria una que otra operación de separación, como por ejemplo la destilación, y los productos finales obtenidos pueden contener residuos perjudiciales para la salud. La extracción con fluido supercrítico se presenta como una tecnología nueva, exige una inversión mayor, pero es extremadamente específica en su extracción y por eso es más utilizada en las industrias farmacéuticas, alimenticias y biotecnológicas.

El desarrollo de esta nueva tecnología consiste en preservar el ecosistema y obtener productos naturales sin contener residuos perjudiciales para la salud del ser humano. Posteriormente estos productos procesados con fluido supercrítico serán utilizados como materia prima o directamente consumidos. Con el afán de preservar la calidad de vida de la población muchos países industrializados están aplicando dicha tecnología; esta tendencia también es observada en algunos países hermanos como en Brasil, Colombia y Venezuela.

2. Fluido supercrítico

Un fluido supercrítico es un fluido a una temperatura y presión encima de su valor crítico. En la figura 1 se muestra el dia-
grama de fases de un componente puro, en este caso, dióxido de carbono. En las líneas de sublimación, de fusión y destilación las dos fases coexisten; la línea líquido-gas se extiende del punto triple al punto crítico donde las propiedades del líquido y vapor son idénticos. En la región supercrítica las propiedades del fluido son sensibles a pequeños cambios en la presión y temperatura. En esta región las líneas de densidad, al aproximarse al punto crítico, van acercándose unas a otras, en consecuencia, pequeños cambios en la presión y temperatura generan grandes alteraciones en la densidad y con eso grandes cambios en el poder de disolución.

Figura 1
Diagrama de fase presión/temperatura de dióxido de carbono

Fuente: Brogle, 1982

3. Tecnología en la extracción con fluido supercrítico

La preocupación, tanto a nivel científico como industrial en el desarrollo tecnológico, ha dado lugar a nuevas estrategias en
la extracción de aceites esenciales y en la producción de alimentos que sean aceptables, atractivos y consumibles. Esto condujo a la exploración en la utilización de fluido supercrítico como solvente en el proceso de extracción.

El proceso que utiliza fluido supercrítico es relativamente simple, porque explora las distintas propiedades que el fluido tiene alrededor de su punto crítico. Un fluido supercrítico presenta propiedades físicas intermediarias entre un líquido y un gas, con alta densidad, baja viscosidad y difusividad superior al de la fase líquida. En la región supercrítica las propiedades son particularmente sensibles a la temperatura o a la presión.

Esta característica confiere al fluido supercrítico (FSC) una importancia primordial para los procesos de extracción. Utilizándose un FSC se puede variar el poder de solubilización para obtener la extracción del producto requerido.

Por ejemplo el dióxido de carbono (CO₂), una sustancia que no es tóxica, no es inflamable y de costo relativamente bajo, se presenta como una alternativa atrayente en la utilización como solvente en la extracción de componentes de productos farmacéuticos y alimenticios (Grimmett, 1981). La temperatura crítica baja (31°C) del dióxido de carbono permite que sea utilizado en el estado supercrítico, sin causar daños a las propiedades funcionales de los constituyentes de los productos extraídos, donde dichos daños sí son ocasionados durante la destilación con arrastre de vapor.

Otra ventaja importante en la utilización de solventes supercríticos como el CO₂ es la facilidad de separación del material extraído del solvente, en comparación con los procesos de extracción convencionales con solventes líquidos donde siempre es necesaria otra operación de separación, tal como la destilación. En la extracción supercrítica, la separación se realiza por una simple manipulación de temperatura o presión que produce una precipitación del producto extraído dejando el solvente libre para ser reciclado. Con el uso de dióxido de carbono supercrítico (CO₂SC) en la extracción de productos alimenticios o farmacéuticos no existe el riesgo de contener residuos peligrosos para la salud en los productos finales, como puede suceder en la utilización de solventes convencionales.

Una ventaja particular del proceso de extracción con fluido supercrítico es ser eficaz en extraer componentes diluidos que son fácilmente recuperados en una forma concentrada en la etapa de separación; esta característica y además la operación
al ser factible a temperaturas moderadas permite que el proceso sea atractivo y aplicado en las diversas industrias farmacéuticas, alimenticias y biotecnológicas.

4. Extracción de productos naturales utilizando CO$_2$ supercrítico

Es una nueva operación unitaria que permite manipular el poder del solvente con facilidad, pudiéndose obtener con esos altos rendimientos y mejor calidad del producto final. El proceso de extracción supercrítica consiste en que la fase condensada de la materia prima es disuelta por el fluido supercrítico. El producto extraído es seguidamente precipitado, siguiendo una reducción de presión. El producto es entonces separado y el solvente es reciclado al sistema. El producto extraído también puede ser recuperado por el aumento en la temperatura, explorando el comportamiento retrógrado (ocurre a la disminución de la solubilidad con el aumento de la temperatura, Hollar, 1990).

Un proceso típico de extracción supercrítica (figura 2) está constituido básicamente por una bomba, un refrigerador para enfriar el fluido bombeado y mantenerlo en la fase líquida, un extractor, una válvula micrométrica para reducir la presión y un controlador de flujo que permita indicar y registrar la cantidad de solvente utilizado en el proceso de extracción.

Figura 2

Equipamiento de extracción supercrítica

Fuente: Arul, 1994
5. Productos naturales

El inmenso poder de solvencia del fluido supercrítico fue reconocido hace más de 100 años por Hannay y Hogarth (1897), pero su aplicación recién se está dando en estas últimas décadas. El fluido supercrítico está siendo utilizado actualmente a escala comercial en la extracción de cafeína de los granos del café y en la extracción de aceites esenciales. En el cuadro Nº 1 se presenta algunas de las industrias que operan con fluido supercrítico a nivel comercial.

Cuadro Nº 1
Procesos y plantas de extracción con CO₂ supercrítico

<table>
<thead>
<tr>
<th>Proceso</th>
<th>Empresa</th>
<th>País</th>
</tr>
</thead>
<tbody>
<tr>
<td>Descafeinización del café</td>
<td>Kaffee HAG AG</td>
<td>Alemania</td>
</tr>
<tr>
<td>"</td>
<td>General Foods</td>
<td>Texas, EE UU</td>
</tr>
<tr>
<td>"</td>
<td>Hermosen</td>
<td>Alemania</td>
</tr>
<tr>
<td>Descafeinización del té</td>
<td>SKW-Tronsberg</td>
<td>Alemania</td>
</tr>
<tr>
<td>Extracción del lúpulo</td>
<td>Hops Extraction Corp. of America</td>
<td>Washington, EE UU</td>
</tr>
<tr>
<td>Extracción de condimentos</td>
<td>Camilli Albert & Louise</td>
<td>Francia</td>
</tr>
<tr>
<td>Aceite de maíz</td>
<td>Mohri Oil Mills</td>
<td>Japón</td>
</tr>
<tr>
<td>Colorantes del aji</td>
<td>Fuji Flavors</td>
<td>Japón</td>
</tr>
</tbody>
</table>

Fuente: Young, 1994

Otras aplicaciones en el área de alimentos incluyen la extracción del aceite de la semilla del algodón, de los granos del maíz y soya, y la remoción de los lipídios y colesterol de la grasa del pescado, para citar solamente algunos (McHugh y Krukonis, 1986).

6. Colesterol

Con el objetivo de alterar la composición de la grasa del animal se está utilizando el CO₂ supercrítico como solvente (Froning, 1981), Wehling (1991) consiguió reducir la cantidad de colesterol en un 85% contenida en la carne de vacuno y pollo deshidratado utilizando CO₂ supercrítico. En estudios realizados por Froning (1991) mostró la posibilidad de extraer el coleste-
rol del huevo utilizando CO$_2$SC a una temperatura de 20° a 90° C y presión de 100 a 340 atm. La posibilidad de producir grasa de leche con un 90% menos del colesterol, manteniendo el sabor y el color del producto original, fue presentada por Bradley (1991). En investigaciones recientes realizadas en el Brasil por Neves y Huayta (1996) encontraron los mismos resultados para la grasa de la leche utilizando como solvente CO$_2$ y etano supercrítico.

7. Conclusiones

La ventaja importante del uso de fluido supercrítico como el CO$_2$ es la facilidad de separación del material extraído del solvente, en comparación con los procesos de extracción convencionales.

La temperatura crítica baja (31° C) del CO$_2$ permite que sea utilizado, en el estado supercrítico, sin causar daños a las propiedades funcionales de las proteínas y otros constituyentes de los alimentos.

En la extracción con fluido supercrítico se consigue alto poder agregado, con esto aumenta el valor del producto final, también se obtiene productos finales sin residuos peligrosos para la salud.

Con esta nueva tecnología se consigue preservar nuestro ecosistema, manteniendo los ríos libres de contaminantes, de igual forma no emanarían gases al medio ambiente.
Bibliografía

Bradley, R.L.

Brogle, H.

Froning, G.W.

Hannay, J.B. and J. Hogarth

Hollar, W.E. and P. Ehrlich

Huayta, S.F.
"Remocao de colesterol e fracionamento do óleo de manteiga com etano supercrítico". Tese de Maestrado, Engenheria Química, Unicamp (Campinas-Brasil), 1996.

McHugh, M.A. and V.J. Krukonis
Neves, B.M.
“Solubilidade do colesterol e do óleo de manteiga em dióxido de carbono supercrítico”. Tese de Maestrado, Engenharia Química, Unicamp (Campinas-Brasil), 1996.

Wehling, R.L.