Combustibles alternativos en motores de combustión interna¹

Juan Carlos Goñi Delión* Mario Rojas Delgado*

Universidad de Lima. Lima, Perú

Recibido: 30 de abril de 2014 / Aprobado: 26 de junio de 2014

RESUMEN: Este artículo explica el efecto de mezclas de combustible convencional con mayor concentración de biocombustible en motores de combustión interna. Los parámetros de operación de un motor de combustión interna fueron medidos mediante un freno de corrientes parásitas y equipo auxiliar. Se hicieron pruebas con mezclas de gasolina-alcohol carburante en un motor de ciclo Otto y de petróleo diésel-biodiésel en un motor de ciclo Diesel. Los resultados de la medición de los parámetros fueron analizados y se concluyó que un mayor contenido de biocombustible en las mezclas produce leve efecto en los valores de los parámetros del motor.

Palabras clave: petróleo diésel / gasolina / biocombustible / motor

Alternative fuels in internal combustion engines

ABSTRACT: This paper explains the effect of blends of conventional fuel with higher concentration of biofuel in internal combustion engines. The operational parameters of an internal combustion engine were measured by means of a parasitic current brake and auxiliary equipment. Tests were made with blends of gasoline-carburetting alcohol in an Otto cycle engine; and with blends of fuel oil-biodiesel, in a Diesel cycle engine. The results of the measurement of the parameters were analyzed, and the conclusion was that a higher concentration of biofuel in blends produces slight effect in the engine parameter values.

Key words: fuel oil / gasoline / biofuel / engine

¹ Este artículo se basa en los resultados de la investigación "Combustibles alternativos en motores de combustión interna de cilindrada entre 1,200 y 2,000 centímetros cúbicos", que fue realizada durante el año 2012, mediante el patrocinio del Instituto de Investigación Científica de la Universidad de Lima.

^{*} Correos electrónicos: jgoni@ulima.edu.pe, mrojas@ulima.edu.pe.

1. INTRODUCCIÓN

1.1 Biocombustibles

Se denominan biocombustibles a los combustibles que se obtienen a partir de biomasa, mediante un proceso sostenible. Los llamados biocombustibles de primera generación suponen la existencia de otro tipo de biocombustibles, denominados biocombustibles de segunda generación, actualmente en desarrollo.

Si bien no existe una definición clara al respecto, se entiende que los biocombustibles de primera generación son aquellos que se producen a partir de materias primas convencionales, reducen emisiones de gases de efecto invernadero en relación con los combustibles fósiles, tienen presencia en el mercado, son muy importantes para el desarrollo de nuevas generaciones de biocombustibles y se producen sosteniblemente.

Para la obtención de biocombustibles se utilizan también insumos empleados para la alimentación humana, lo cual ha generado preocupación y críticas por parte de la población, debido a que esto puede generar el encarecimiento de los alimentos.

El ingreso en el mercado de biocombustibles de primera generación mezclados con combustibles de origen fósil, a pesar de su mayor precio, ha motivado su comercialización, lo cual ha permitido lograr una menor contaminación atmosférica, la cual también depende de la materia prima empleada para la fabricación del biocombustible y del tipo de producto obtenido.

Para la existencia de los biocombustibles de segunda generación ha sido necesario que primero existan los biocombustibles de primera generación; y se ha logrado ya la coexistencia de ambas generaciones. Un requisito obligatorio para la producción de cualquier tipo y generación de biocombustible es que este se produzca de una manera sostenible.

Entre los principales biocombustibles de primera generación que se pueden producir sosteniblemente están el biodiésel, el bioetanol y el biogás.

En la tabla 1 se muestra un referencial de clasificación tentativa y la evolución actual de los biocombustibles.

Tabla 1
Clasificación de biocombustibles por recursos y procesos

Generación	Recursos y procesos
Primera	Cultivos alimentarios para hacer combustibles: biodiésel de aceite vegetal (transesterificación) y bioetanol (fermentación de soluciones azucaradas).
Segunda	Cultivos no alimentarios o en tierras de cultivo marginales no aptas para cultivos alimentarios para hacer biocombustibles. Se considera procesamiento de biomasa, lípidos marginales para biodiésel y lignocelulósicos para alcohol.
Tercera	No se usan tierras arables y la biomasa se descompone para obtener materia prima para hacer combustibles. Se considera el procesamiento de microalgas para obtener biodiésel (liporrefinería) y bioetanol (lignocelurefinería).
Cuarta	No se usan tierras arables y la biomasa no se descompone para hacer combustibles. Se considera el procesamiento de microalgas para obtener biodiésel por termoconversión (liporrefinería). Está actualmente en desarrollo.

Elaboración propia.

1.2 Relación entre combustible, seguridad energética y servicio de motor

En la tabla 2 se muestra el referencial de seguridad energética y uso de combustibles en motores, como factores claves en el desarrollo industrial en el ámbito internacional y en el Perú.

Tabla 2
Relación entre combustible, seguridad energética y servicio de motor

Combustible	Seguridad energética	Servicio de motor
Biodiésel	El biodiésel se produce en el Perú, pero no cubre la demanda.	Sellos y mangueras del motor pueden ser afectados, pero mejora la lubricidad.
Gas natural comprimido	Se produce en el Perú y se cuenta con reservas. Uso poblacional, automotor y comercial.	Los tanques de acero de alta resis- tencia de los vehículos requieren inspección y certificación.

(continúa)

(continuación)

Combustible	Seguridad energética	Servicio de motor
Petróleo diésel n.° 2	El Perú importa el diésel n.° 2 de muy bajo contenido de azufre.	Convencional, normal.
Electricidad	Nuestro país se cuenta con plantas termoeléctricas a gas natural, biogás e hidroeléctricas.	En vehículos con motores eléctricos, se reduce el servicio de mantenimiento, pero tiene mayor peso.
Bioetanol	En el Perú se produce el bioeta- nol pero no sin que se cubra la demanda. Para obtener alcohol carburante se desnaturaliza.	Puede requerirse lubricantes especiales. Servicio similar a los motores de ciclo Otto.
Gasolina	Se importa gasolina especial por número de octano y bajo conteni- do de azufre.	Convencional, normal.
Hidrógeno	Se produce en nuestro país solo para uso industrial.	Está en desarrollo para uso en cel- das de combustible.
Gas natural licuado	Se produce para exportación.	Los tanques de acero de alta resistencia requieren inspección y certificación.
Gas licuado de petróleo	Se produce para uso poblacional, automotor y comercial.	Ha tenido uso automotor y compite con el gas natural vehicular.
Metanol	Mínima producción, como sub- producto.	Se deben usar lubricantes especiales y compatibilidad, también en autopartes.

Fuente: US-DOE-FDC Alternative Fuels Data Center, 2011. Elaboración propia.

1.3 Evolución de la generación de gases de efecto invernadero (GEI)

Los gases de efecto invernadero se definen como gases integrantes de la atmósfera, de origen natural y antropogénico, que absorben y emiten radiación en determinadas longitudes de ondas del espectro de radiación infrarroja emitido por la superficie de la Tierra, la atmósfera, y las nubes. Esta propiedad causa el efecto invernadero. El vapor de agua (H₂O), el dióxido de carbono (CO₂), el óxido nitroso (NO₂), el metano (CH₄) y el ozono (O₃) son los principales gases de efecto invernadero en la atmósfera terrestre.

En la tabla 3 se observa la evolución creciente de emisión de gases de efecto invernadero entre el 2005 y el 2008, luego desciende el 2009 con el inicio del uso de gasohol, DB2 y DB5, y desde este año aumenta en proporción al crecimiento del parque automotor entre los años 2010 y 2012.

Tabla 3
Evolución de gases de efecto invernadero en el Perú, en el periodo 2005-2012 (kt CO₂ eq.)

Año	2005	2006	2007	2008	2009	2010	2011	2012
Magnitud	150,324	160,061	163,925	167,373	143,075	147,978	151,930	155,883

Fuente: Minam, Sinia, 2013.

Elaboración propia.

1.4 Objetivo y justificación

El objetivo general del trabajo de investigación fue la evaluación comparativa del uso de mezclas de combustibles convencionales y combustibles alternativos en motores de combustión interna, respecto de sus parámetros de funcionamiento.

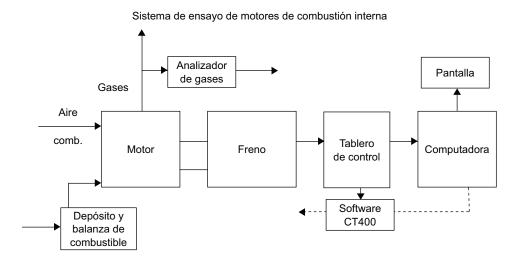
Para tal fin se prepararon las mezclas de gasolina-alcohol carburante y de petróleo diésel n.º 2-biodiésel, para realizar en un banco de pruebas las mediciones de régimen, torque, potencia, consumo de combustible y determinación de la eficiencia del motor.

La evaluación ha considerado las funciones (relaciones): consumotorque, consumo-potencia, eficiencia-torque, eficiencia-potencia, eficiencia-consumo y eficiencia-régimen. Se consideraron como línea base los libros de Rojas et al. (2006) y Goñi (2009).

La investigación se sustenta en el ensayo de mezclas de combustibles derivados del petróleo con una mayor cantidad de biocombustibles, para reducir la emisión de gases de efecto invernadero causantes del cambio climático en el planeta (véase la tabla 3).

Como hipótesis de trabajo se consideró que las mezclas de gasolina y petróleo diésel n.º 2 con alcohol carburante y biodiésel, respectivamente, mejoran la combustión en un motor, debido a la mayor presencia de oxígeno en la mezcla.

1.5 Planteamiento general del trabajo de investigación


En la figura 1 se muestra el diagrama conceptual del planteamiento general del trabajo de investigación; este comprende el marco referencial y conceptual, el trabajo experimental, el análisis y discusión de los resultados; todos los cuales conducen a las conclusiones.

Propuesta Introducción Planteamiento general Recopilación Selección de referencias Marco referencial Revisión de la información **Fundamentos** Temas controversiales Marco conceptual Protocolos e instructivos Plan experimental Trabajo de laboratorio Mezclas seleccionadas Mediciones y registro Resultados Discusión y conclusiones Análisis de resultados Alcance de objetivos Resultados Conclusiones

Figura 1
Diagrama del planteamiento de la investigación

- 2. MEDICIÓN EXPERIMENTAL DE LA POTENCIA DE UN MOTOR Y SUS PARÁMETROS TÉCNICOS DE FUNCIONAMIENTO, MEDIANTE EL USO DE COMBUSTIBLES SELECCIONADOS
- a) Se planteó hacer la medición de datos experimentales en un banco de pruebas dinamométrico para motores de combustión interna (véase la figura 2).

Figura 2
Diagrama simplificado del sistema de ensayo de motores de combustión interna

Fuente: GUNT (2007). Elaboración propia.

b) Se planteó preparar las mezclas de combustibles que se van a ensayar en el motor de ciclo Otto (Mezclas G95EZ) y para el motor de ciclo diésel (mezclas DBX). A través del apoyo de Osinergmin, se estimaron los contenidos de alcohol carburante y biodiésel, respectivamente (véanse las tablas 4 y 5).

Tabla 4
Relación de mezclas G95EZ ensayadas

Contenido de alcohol carburante (alcohol desnaturalizado)			
Mezcla nominal	Alcohol carburante (% volumen y masa medidos)		
(G95EZ)	% Vol. NominMedido-Difer.	% Vol.	% Masa
G95E7.8	7.8-7.8-∆ 1.1	8.9	9.4
G95E10	10.0-10.3-Δ 1,4	11.7	12.3
G95E12	12.0-12.8-Δ 1.5	14.3	15.0

Elaboración propia.

Tabla 5 Relación de mezclas (DBX) ensayadas

Contenido de biodiésel (ester metílico de ácido graso-FAME*)				
Mezcla nominal	В	Biodiésel (% Vo	umen medido)	1
(DBX)	Registro 1	Registro 2	Registro 3	Promedio
DB5	5.0	4.9	4.8	4.9
DB10	10.7	10.7	10.6	10.7
DB12	12.9	12.9	12.8	12.9

^{*} Fatty Acid Methyl Ester. Elaboración propia.

c) Se planteó determinar régimen, torque, potencia, consumo de combustible y eficiencia para las pruebas de la mezcla G95EZ en el motor de ciclo Otto, marca Ford, de 1,400 centímetros cúbicos; y las mezclas DBX en el motor de ciclo Diésel, marca Volkswagen, de 1,800 centímetros cúbicos (véase la tabla 6).

Tabla 6
Plan de ensayos de las mezclas G95EZ (motor de ciclo Otto)
y DBX (motor de ciclo Diésel)

Plan de ensayos de mezclas de combustibles G95EZ en el motor de ciclo Otto (encendido por chispa)			
Mezclas	s por ensayar (G95EZ)		
G95E7.8	G95E10	G95E12	
Relación de parámetros se	eleccionados para el motor d	le ciclo Otto	
Régimen (n) = 2,050 rpm			
Consumo (kg/h) versus torque (Nm)			
Consumo (kg/h) versus potencia (kW)			
Eficiencia (%) versus torque (Nm)			
Eficiencia (%) versus potencia	Eficiencia (%) versus potencia (kW)		
Eficiencia (%) versus consumo de combustible (kg/h)			
Régimen (n) = Variable			
Eficiencia (%) versus régimen	(rpm). Sin carga (Torque mín.)	

Elaboración propia.

Plan de ensayos de mezclas de combustibles DBX en el motor de ciclo Diésel (encendido por compresión)			
Mezcla	as por ensayar (DBX)		
DB5	DB10	DB12	
Relación de parámetros se	leccionados para el motor d	e ciclo Diésel	
Régi	men (n) = 1,500 rpm		
Consumo (kg/h) versus torqu	e (Nm)		
Consumo (kg/h) versus potencia (kW)			
Eficiencia (%) versus torque (Nm)			
Eficiencia (%) versus potencia (kW)			
Eficiencia (%) versus consumo de combustible (kg/h)			
Régimen (n) = Variable			
Eficiencia (%) versus régimer	Eficiencia (%) versus régimen (rpm). Sin carga (Torque mín.)		

Elaboración propia.

d) Se planteó el uso del siguiente formato para el registro de datos (véase la tabla 7).

Tabla 7
Protocolo de toma de datos experimentales en el banco de pruebas (2012)

Ê	bar °C %	
40 N.n	1 1 1	Pot (kW)
20, 30,	Condiciones ambientales Presión: Temperatura: Humedad relativa:	F (S. S.)
ndable	ones a :atura:_ ad relat	F, S) (E. S)
есоше.	Condiciones ambi Presión: Temperatura: Humedad relativa:	(N.m)
(Torque recomendable 20, 30, 40 N.m)		$\begin{array}{c cccc} \dot{m}_c & \dot{V}_{aire} & \dot{V}_{agus} & T_B & T_K & T_C \\ (kg/h) & (m^3/min) & (m^3/min) & (N.m) & (N.m) & (N.m) \end{array}$
		ن ^{ماره} (m³/min)
		<i>i</i> т _° (kg/h)
.e.		Gases de escape
_ Fecha: _		(°C) Aceite
°.		Temperaturas (°C) da Entrada Ace la de aire
Ensayo N.°		Salida de agua
;	Combustible:	Entrada de agua
Motor	Combustible: _	(rpm)

Elaboración propia.

3. RESULTADOS EXPERIMENTALES CORRELACIONADOS Y DISCUSIÓN

3.1 Resultados y discusión de ensayos de mezclas G95Z en el motor de ciclo Otto

En la tabla 8 se presentan los resultados y la discusión de las correlaciones de los parámetros indicados según los datos experimentales obtenidos para las mezclas G95Z, los cuales han sido obtenidos con el banco de pruebas para el motor de ciclo Otto.

Tabla 8
Discusión de resultados para mezclas G95Z en motor de ciclo Otto

Relación de		Motor de ciclo Otto		
parámetros del motor	G95E7.8	G95E10	G95E12	
Consumo-torque		bustible varía y aume para los diferentes po ferencia significativa.		
Consumo-potencia	entregada por el mot	El consumo de combustible para una determinada potencia entregada por el motor no se ve afectado significativamente con el incremento de alcohol carburante en la mezcla.		
Eficiencia-torque	El efecto de la eficiencia con respecto al torque sigue una tendencia similar que la relación consumo-torque con el incremento de alcohol carburante en la mezcla.			
Eficiencia-potencia	La eficiencia con respecto a la potencia sigue una correlación similar que la tendencia consumo-potencia ante el incremento del alcohol carburante en la mezcla.			
Eficiencia-consumo		rencia significativa en el porcentaje de mez		
Eficiencia-régimen	A pesar de que esta relación se obtuvo sin carga del motor (solo las perdidas por el freno dinamométrico) la pequeña eficiencia se incrementó significativamente con el régimen del motor para cada una de las mezclas. En este caso la eficiencia mejoró ligeramente con el incremento del contenido de alcohol carburante en la mezcla.			

3.2 Resultados y discusión de ensayos de mezclas DBX en el motor de ciclo Diésel

En la tabla 9 se presentan los resultados y discusión de las correlaciones de los parámetros indicados, según los datos experimentales obtenidos para las mezclas DBX, que han sido determinados en el banco de pruebas para el motor de ciclo Diésel.

Tabla 9
Discusión de resultados para mezclas DBX en motor de ciclo Diésel

Relación de	M	otor de ciclo Diésel	
parámetros del motor	DB5	DB10	DB12
Consumo-torque	El consumo de comb tiene una tendencia a de biodiésel para la mo torques.	la baja ante el increr	mento en porcentaje
Consumo-potencia	El consumo de comb disminuyendo con el a la mezcla. Esta disminu potencias.	umento de la proporc	ción del biodiésel en
Eficiencia-torque	El efecto de la eficie tendencia ligeramente biodiésel en la mezcla.	descendente ante	
Eficiencia-potencia	La eficiencia con resp tendencia ligeramente a en la mezcla.	•	•
Eficiencia-consumo	De las pruebas obteni eficiencia aumenta lige de biodiésel. A medid de combustible, esta constante e incluso lige	eramente con el increi a que se va increme tendencia empieza a	mento del contenido entando el consumo a cambiar: se hace
Eficiencia-régimen	Esta relación se obtien- perdidas por el freno o mantiene aproximadan las diferentes mezclas	linamométrico) y la pe nente en el mismo orde	equeña eficiencia se en de magnitud para

3.3 Comparación con trabajos similares

En el ámbito nacional no se conocen referencias de pruebas con mezclas de gasolina con bajo contenido de azufre y alcohol carburante ni con mezclas de petróleo diésel de bajo contenido de azufre y biodiésel, debido a que las refinerías locales no las producen. Al respecto, cabe citar resultados de pruebas de campo hechas en Colombia, con motores de ciclo Diésel, empleando mezclas de petróleo diésel y biodiésel en buses y camiones.

En Colombia se han desarro-llado pruebas en buses y camiones, empleando biodiésel de primera generación. En la tabla 10 se muestran algunos resultados de estas pruebas, lo que refuerza la posibilidad de hacerla en el futuro con mayor contenido de biodiésel.

Tabla 10
Resumen de las pruebas realizadas con mezclas DBZ

Características	Mezclas probadas	Conclusión
Pruebas de larga duración utilizando doce buses arti- culados del operador 5199 del sistema Transmilenio en Bogotá	DB5, DB10, DB20,DB30,DB50	Este combustible ecológico se puede incorporar a vehículos a diésel en mezclas de 5%, 10%, 20%, 30% y hasta 50%, sin problemas en los motores y en la inyección.
Pruebas en nueve camiones que recorrieron las carrete- ras de Colombia	DB5, DB10, DB20	Tuvo un buen desempeño, sin incremento en el consumo de combustible y con niveles normales de desgaste en el motor.
Prueba con equipos de operación minera	DB5 y DB10	Tuvo un buen desempeño como combustible.

Fuente: Ecopetrol-Cenipalma-Fedepalm (2012).

3.4 Observaciones

- a) Comparativa de propiedades de los componentes de las mezclas de combustibles ensayadas. Al observar las cifras de la tabla 11 de propiedades de los componentes de las mezclas, se puede aseverar lo siguiente:
 - El poder calorífico inferior (PCI) de una mezcla diésel-biodiésel y la de una mezcla gasolina-bioetanol desnaturalizado tiende a disminuir, según el porcentaje del respectivo biocombustible.
 - La densidad de una mezcla diésel-biodiésel y de una mezcla gasolina-etanol tiende a elevarse, según el porcentaje del respectivo biocombustible.

Tabla 11
Algunas propiedades de los componentes de las mezclas de combustibles ensayadas

Propiedad	Diésel bajo azufre	Biodiésel	Gasolina bajo azufre	Bioetanol
PCI (MJ/kg)	42.61	37.53	42.36	26.95
Densidad (kg/L)	0.8470	0.8880	0.7477	0.7894
DEVI (MJ/L)	36.09	33.33	31.67	21.28
Número de cetano*	40-45*	48-65*		
Número de octano**			84-93**	110**

Fuente: US-DOE-FDC Alternative Fuels Data Center (2011). Elaboración propia.

- La densidad energética volumétrica inferior (DEVI) de una mezcla diésel-biodiésel y de una mezcla gasolina-bioetanol desnaturalizado tiende a disminuir, según el porcentaje del respectivo biocombustible.
- El número de cetano de una mezcla diesel-biodiesel y el número de octano de una mezcla gasolina-etanol tienden a aumentar, según el porcentaje del respectivo biocombustible.
- b) El primer trabajo de investigación de mezclas combustibles fósilesbiocombustibles, desarrollado en el Banco de Motores del Laborato-

212

rio de Máquinas e Instrumentos de la Universidad de Lima se ha cumplido en una fase preliminar, bajo las siguientes condiciones:

La concentración del biocombustible en las mezclas ensayadas tiene carácter nominal. Se ha verificado el contenido del biocombustible con equipos de medición de laboratorio, y se ha observado que el combustible comercial de una refinería tiene diferente concentración de biocombustible al valor nominal.

- c) Se tienen referencias de trabajos experimentales con otras mezclas de combustibles-biocombustibles con mayor concentración de biocombustible, pero con combustibles fósiles con alto contenido de azufre. Las mezclas ensayadas son combustibles fósiles con muy bajo contenido de azufre y menor concentración de biocombustible.
- d) Se espera que a mayor concentración se obtengan mejores resultados con relación a los valores de los parámetros del motor, pero podría presentarse deterioro en los componentes de este.

Para una siguiente investigación, se recomienda incrementar la concentración del biocombustible, medir la composición de los gases de combustión, determinar el poder calorífico de las mezclas con ensayos de laboratorio y normalizar los procedimientos.

CONCLUSIONES DEL TRABAJO EXPERIMENTAL CON MEZCLAS DE COMBUSTIBLES EN MOTORES DE CICLO OTTO (G95EZ) Y DE CICLO DIÉSEL (DBX)

El régimen promedio de trabajo de los motores a gasolina y con mezclas G95EZ es aproximadamente 2,000 rpm para la industria automotriz, donde el régimen mínimo parte de 800 rpm y llega hasta un máximo promedio de 6,000 rpm para los motores actuales.

En un servicio normal, los autos con motor de ciclo Otto y de 1,400 centímetros cúbicos, desarrollan 2,000 rpm a un torque promedio de 40 Nm, que representa aproximadamente el 42% de su carga máxima a dichas revoluciones.

Con el motor frío y hasta los 60 °C de temperatura de agua de refrigeración, el motor a gasolina consume el doble de combustible en kg/h para su calentamiento previo y llegar a su temperatura de trabajo. Aproximadamente a 80 °C de temperatura del agua, el consumo de combustible llega a su nivel de diseño. En los motores de ciclo Diésel, el efecto del consumo es de similares características.

El régimen de trabajo de los motores de ciclo Diesel para la industria automotriz puede considerarse en alrededor de 1,500 rpm, con un giro de 600 rpm inicial y un máximo promedio de 3,600 rpm.

Los vehículos con motor de ciclo Diesel y tamaño de motor 1,800 centímetros cúbicos, desarrollan 1,500 rpm y una carga de 40 Nm en servicio normal, lo cual representa el 35 % de su carga máxima a dichas revoluciones.

La eficiencia de los motores a gasolina y gasohol puede llegar a 32 %, lo que representa una elevada energía, pérdida de calor o desaprovechamiento elevado de la energía entregada por el combustible. Esta tendencia en la eficiencia se mantuvo en las diferentes mezclas de combustible y biocombustible ensayados.

Para las mezclas de diésel-biodiésel la eficiencia llegó a 37 %, que es un valor bajo de aprovechamiento de energía, sin embargo, es superior a los motores de ciclo Otto. Se concluye que los motores de encendido por compresión son más eficientes que los motores de encendido por chispa.

La eficiencia de los motores de combustión interna no es constante, y aumenta con el incremento de la carga o torque, hasta llegar a un valor máximo y luego la tendencia a descender significativamente.

Se observa que el incremento del consumo de combustible es mayor en los motores de ciclo Otto que en los motores de ciclo Diésel ante el aumento de carga o par motor, y conservando las rpm constantes. El coeficiente de exceso de aire o valor lambda en los motores de ciclo Otto es menor que la unidad, lo que hace una mezcla rica en la combustión y un mayor consumo.

Las emisiones contaminantes en los motores de ciclo Otto que funcionan con mezcla de alcohol carburante son menores que con gasolina pura. La molécula de los alcoholes contiene oxígeno y esto favorece la producción de vapor de agua en los gases de escape.

Como la relación estequiométrica de combustión del alcohol carburante es menor (9.4 kg aire/kg de alcohol), la mezcla G95EZ requerirá de menor cantidad de aire para su combustión completa. El combustible fósil tiene una relación estequiométrica de 14.7 kg aire/kg de combustible; es decir, para igual consumo de combustible, el alcohol carburante requiere un volumen de cilindrada menor en el motor.

El alcohol carburante tiene un número de octano más elevado que las gasolinas, lo que incrementa su poder antidetonante. Este factor permite mejorar y elevar la relación de compresión de un motor que aumentan su potencia y eficiencia significativamente.

El poder calorífico del alcohol carburante es menor que el de las gasolinas, lo que representa una menor potencia efectiva final. Este parámetro puede ser compensado con el incremento en la inyección de combustible al motor, que requiere de menor aire estequiométrico, o se puede incrementar la relación de compresión del motor para mejorar su eficiencia.

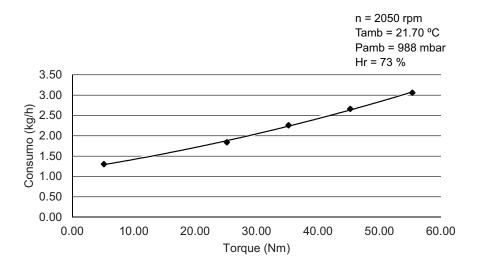
Los diferentes números de octano de las mezclas con alcohol carburante no representan una limitación técnica en los motores, pues el adelanto de chispa según el número de octano puede ser regulado con la unidad de control del motor.

Se están realizando proyecciones para experimentar con un porcentaje de hidrógeno/oxígeno a inyectar en la mezcla aire-gasolina. La generación de hidrógeno se da con una celda electrolítica, que recibe carga eléctrica por medio del alternador del motor.

Finalmente, se concluye que al incrementar en las mezclas actuales G95E7.8 y DB5 el contenido de biocombustible a 10 y 12 % en volumen, las nuevas mezclas ensayadas presentaron solo un leve efecto en los valores de los parámetros del motor.

CONCLUSIONES RESPECTO AL EXAMEN GRÁFICO DE FUNCIONES DE TENDENCIA DE LOS RESULTADOS DE LAS MEZCLAS G95E12 Y DB12 PROBADAS EN EL LABORATORIO

En este inciso, se muestran como ejemplo de todos los ensayos, los resultados de las pruebas realizadas con las mezclas de biocombustibles gasolina-alcohol carburante (G95E12) y petróleo diésel-biodiésel (DB12). El banco de pruebas para motores de combustión interna con un freno de corrientes parásitas acoplado tiene la opción de montar un motor de ciclo Diésel o uno de ciclo Otto, según sea el caso.


Cada prueba ha comprendido aproximadamente 16 registros o más, para obtener la correlación de cuatro puntos promedios para la variable independiente. En algunos casos fueron cinco puntos. Se aplicó una regresión polinómica; se logró un coeficiente de correlación para las mezclas G95E12 de 0.98 o mayor, y para las mezclas DB12 de 0.97 o mayor.

5.1 Curvas de mezclas de G95 E12

Se presentan las curvas de los ensayos realizados con las mezclas de combustible G95E12, en proporción gasolina 95 octanos 88.0 % y alcohol carburante 12.0 % en volumen. Este combustible no se encuentra en el mercado nacional.

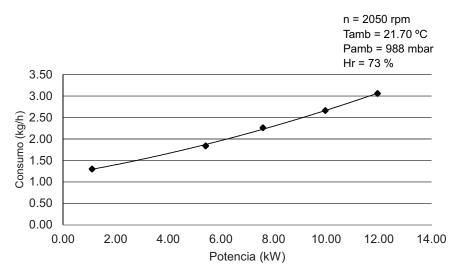

La primera curva muestra el consumo de combustible en kg/h en función del torque del motor. El consumo de combustible tiende a incrementarse con el aumento del torque exigido o carga por vencer, en Nm.

Figura 3
Consumo versus torque del combustible G95 E12

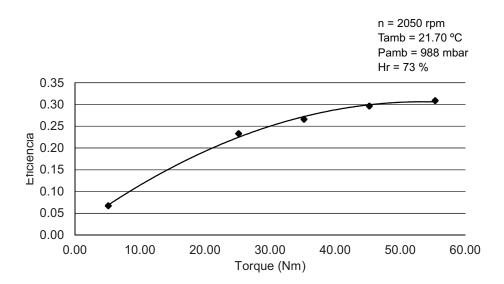

La segunda curva muestra el consumo de combustible en kg/h en función de la potencia efectiva entregada por el eje cigüeñal, en kW. La tendencia del consumo de combustible es de un incremento levemente parabólico.

Figura 4
Consumo versus potencia G95 E12

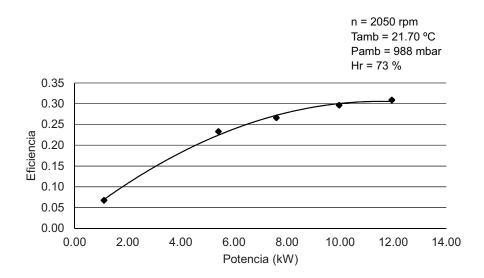

La tercera curva muestra la eficiencia efectiva del motor en función del torque, con una tendencia polinómica hacia el 32 % de eficiencia constante. Cuando la carga es cero, la eficiencia es cero, pues no se transmite potencia ni torque; pero el motor consume combustible para su funcionamiento.

Figura 5
Eficiencia versus torque G95 E12

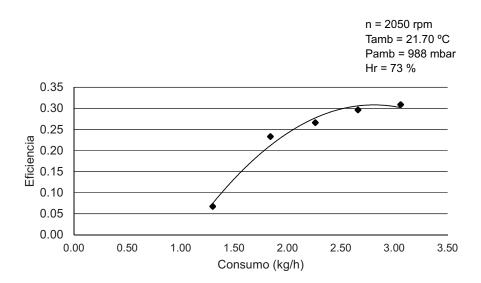

En la cuarta curva se observa que la eficiencia sigue una tendencia polinómica cercana a las mezclas G95 E7.8 y G95 E10.

Figura 6
Eficiencia versus potencia G95 E12

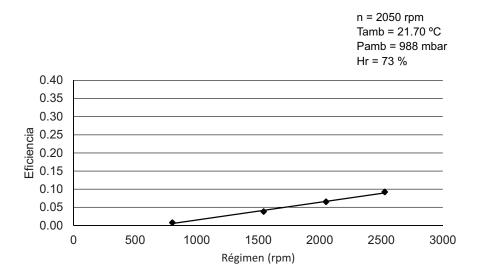
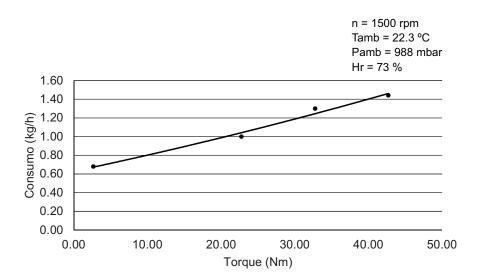

La quinta curva muestra la eficiencia versus el consumo de combustible, marcando una tendencia polinómica con pico máximo de eficiencia hacia un valor constante del 32 %. Sin embargo, el consumo de combustible se eleva fuertemente.

Figura 7
Eficiencia versus consumo G95 E12

La sexta curva muestra la eficiencia versus el régimen en rpm, donde se deben vencer solo las pérdidas que originan la turbulencia del aire del giro del freno dinamométrico.

Figura 8
Eficiencia versus régimen G95 E12



5.2 Curvas de mezclas de DB12

Se presentan las curvas de los ensayos realizados con las mezclas de combustible DB12, en proporción diésel 88,0~% y biodiésel 12,0~% en volumen.

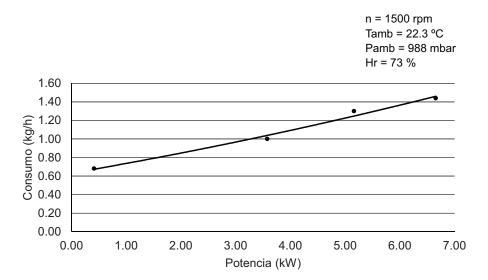

La primera curva muestra el consumo de combustible en kg/h en función del torque del motor. El consumo de combustible tiende a incrementarse con el aumento de torque exigido o carga por vencer, en Nm.

Figura 9
Consumo versus torque DB12

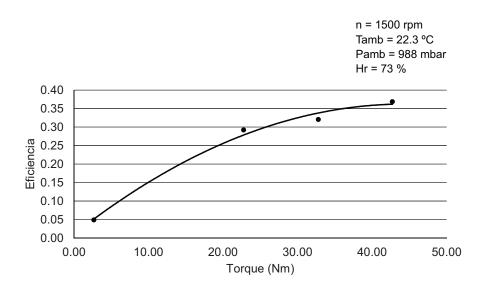

La segunda curva muestra el consumo de combustible en kg/h en función de la potencia efectiva entregada por el eje cigüeñal, en kW. La tendencia del consumo de combustible es de un incremento levemente parabólico.

Figura 10
Consumo versus potencia DB12

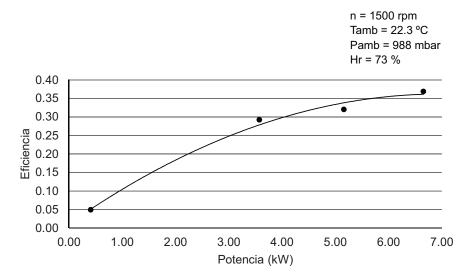

La tercera curva muestra la eficiencia efectiva del motor en función del torque, con una tendencia hacia el 36 % de eficiencia. Cuando la carga es cero, la eficiencia es cero, pues no se transmite potencia ni torque; pero el motor consume combustible para su funcionamiento.

Figura 11
Eficiencia versus torque DB12

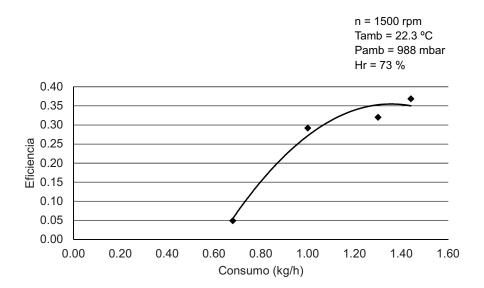

La cuarta curva representa la tendencia de la eficiencia en función de la potencia; se obtiene un valor máximo de 36%.

Figura 12
Eficiencia versus potencia DB12

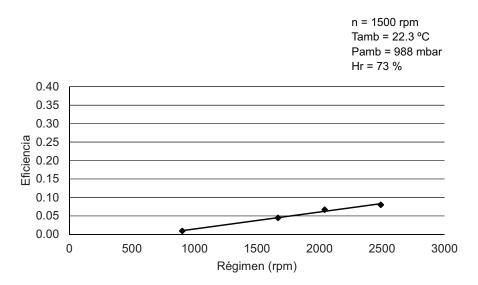
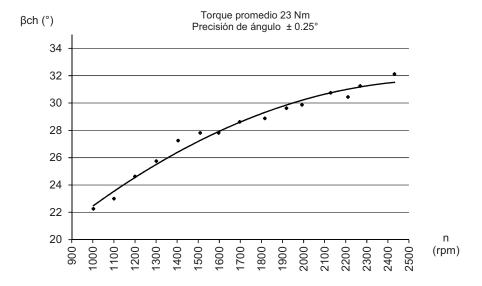

La quinta curva muestra la eficiencia versus el consumo de combustible, marcando una tendencia logarítmica de eficiencia hacia un valor constante del 36%. Sin embargo, el consumo de combustible se eleva fuertemente ante el incremento de la carga o torque.

Figura 13
Eficiencia versus consumo DB12

La sexta curva muestra la eficiencia versus el régimen en rpm, donde se debe vencer solo las pérdidas que originan la turbulencia del aire del giro del freno dinamométrico.

Figura 14
Eficiencia versus régimen DB12


Elaboración propia.

5.3 Ángulo de adelanto de chispa

Los motores de ciclo Otto necesitan un tiempo de formación del frente de llama de la mezcla; a mayor octanaje, el tiempo entre la ignición y la explosión será mayor. Cabe considerar que los autos con mayor relación de compresión requieren mayor número de octanos para evitar detonaciones prematuras. Asimismo, al aumentar el régimen, el tiempo de encendido de la mezcla disminuye y por lo tanto es necesario compensar este intervalo de tiempo, adelantando simultáneamente el ángulo de salto de chispa de la bujía. Este trabajo lo realiza en forma electrónica el computador del motor. La figura muestra el ángulo de adelanto de la chispa en función de la velocidad angular del motor para

la mezcla G95 E12, en la unidad de control activada. A mayor número de revoluciones por minuto del cigüeñal, el adelanto aumenta para dar el tiempo necesario a la producción del frente de llama.

Figura 15 Ángulo de adelanto de la chispa en función de las rpm del eje cigüeñal

Elaboración propia.

El ángulo 6ch° fue tomado con el *scanner* marca Launch, modelo X-431 GDS (año 2012), utilizado para motores de ciclo Otto, ciclo Diésel, gas e híbridos.

REFERENCIAS

- Ecopetrol-Cenipalma-Fedepalma. (2012). Pruebas de mezclas diéselbiodiésel en motores de buses y camiones. Recuperado de http://www.ecopetrol.com.co/especiales/carta_petrolera125/tecnologia. htm
- Goñi, J. C. (2009). *Máquinas hidráulicas y t*érmicas. Lima: Universidad de Lima, Fondo Editorial.
- GUNT Gerätebau GmbH. (2007). Manual de instrucciones. Alemania.
- Ministerio del Ambiente (Minam) (2012). Evolución de emisión de gases de efecto invernadero en Perú. Lima: Minam, Sinaia.
- Rojas, M., López, E., & Zaldívar, S. (2006). Combustibles alternativos para el desarrollo industrial regional. Lima: Universidad de Lima, Fondo Editorial.
- US-DOE-Alternative Fuels Data Center. (2012). Fuel Properties Comparison, USA. Recuperado de http://www.afdc.energy.gov/fuels/biodiesel.html