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ABSTRACT. � is article focuses on the application of neural network control for energy gene-
ration in an internal combustion engine. A two-layer neural network architecture was developed 
and tested using laboratory data obtained from a bench dynamometer to accurately identify the 
network’s parameters. � e neural network is employed to establish an accurate correlation between 
the magnitude of actuation signals and the fundamental variables responsible for regulating energy 
generation within the system. � e control system utilizes a gain-scheduling routine to adjust the 
controller’s gain, which attenuates the increment for low error values. An energy generation model 
is presented to design a virtual engine, enabling accurate control strategies. To ensure the safe opera-
tion of the engine, a safety routine is implemented to prevent the control action from assuming 
values that could negatively impact the vehicle’s response to the driver’s commands. � e developed 
controller demonstrates a low average absolute error in steady-state conditions and a low average 
rise and fall time during transient states, ensuring both drivability and good engine performance. 
To enable the application in so� ware, in structures such as hardware-in-the-loop simulation and 
engine control units, systems are implemented to ensure real-time operations. 

KEYWORDS: neural network control / energy generation / so� ware development 

CONTROL ENERGÉTICO DE MOTORES DE COMBUSTIÓN 
MEDIANTE REDES NEURONALES PARA APLICACIONES DE 

SOFTWARE DE AUTOMOCIÓN

RESUMEN. Este artículo se enfoca en la aplicación del control mediante redes neuronales para la 
generación de energía en un motor de combustión interna. Se desarrolló una arquitectura de red 
neuronal de dos capas y se la probó utilizando datos de laboratorio obtenidos de un dinamóme-
tro de banco para identi� car con precisión los parámetros de la red. Esta se utiliza para establecer 
una correlación precisa entre la magnitud de las señales de actuación y las variables fundamentales 
responsables de regular la generación de energía dentro del sistema. El sistema de control implementa 
una rutina de programación de ganancia para ajustar la ganancia del controlador, lo que disminu-
ye el incremento para valores de error bajos. Se presenta un modelo de generación de energía que 
permite diseñar un motor virtual, lo cual facilita el desarrollo de estrategias de control precisas. Para 
garantizar el funcionamiento seguro del motor, se implementa una rutina de seguridad que previene 
que la acción de control adquiera valores que podrían tener un impacto negativo en la respues-
ta del vehículo a las instrucciones del conductor. El controlador desarrollado demuestra un bajo 
error absoluto promedio en condiciones de estado estable y un bajo tiempo promedio de subida y 
caída durante estados transitorios, asegurando la capacidad de conducción y el buen rendimiento 
del motor. Para habilitar la aplicación en so� ware, en estructuras como el hardware-in-the-loop y la 
unidad de control del motor, se implementan sistemas para garantizar la operación en tiempo real. 

PALABRAS CLAVE: control mediante redes neuronales, generación de energía, desarrollo de 
so� ware.
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1. INTRODUCTION 

� e relentless pursuit of improvements in engine performance is one of the main objectives 
of the automotive industry (Pandey et al., 2021). As drivers become increasingly demanding 
with regard to vehicle drivability, it is essential to apply advancements in the � eld of control 
to meet these demands. Technological advancements have driven signi� cant improvements 
in automotive engine performance. � rough the development of more e�  cient controls, it 
is possible to optimize engine performance and ensure a more satisfying driving experience 
for drivers. One key factor in this context is precise engine control, which positively impacts 
its performance. Advanced controls enable accurate tracking of the desired reference, resul-
ting in improved drivability. When the engine responds promptly and accurately to driver 
commands, the driving experience becomes smoother and safer (Wang et al., 2020). 

� e use of neural networks in control has proven to be of great importance in and impact 
on various � elds of application. Neural networks, which are computational models inspired 
by the functioning of the human brain, have the ability to learn and adapt from input data. 
When applied to control, neural networks can learn complex and nonlinear patterns, allowing 
for more precise actions (Shahbaz & Amin, 2023). � is is especially relevant in nonlinear 
systems. By utilizing neural networks in control, it is possible to achieve a higher level of e�  -
ciency, precision and adaptability, which contributes to optimizing processes, reducing errors 
and promoting signi� cant technological advancements (Ineza Havugimana et al., 2023). 

� ere are notable research studies in the � eld of control with neural networks for internal 
combustion engines. Moriyasu et al. (2019) controlled the engine’s air system using a  neural 
network-based controller and an unscented Kalman � lter. Zhao et al. (2020) controlled 
the engine speed using a radial basis function-based proportional integral derivative (PID) 
controller based on neural network theory. Wong et al. (2020) developed an extreme lear-
ning machine (ELM)-based adaptive neural control algorithm to control the idle speed of 
the engine. Gordon et al. (2022), aiming to control combustion for improved pollutant emis-
sion levels, used a deep neural network (DNN) to develop a predictive controller. Vignesh & 
Ashok (2021) used a DNN to create a predictive model in order to develop optimal injection 
control for emission reduction. 

2. METHODOLOGY  

A mean-value model is used for energy generation. In order to estimate the e� ective torque 
value 𝑇𝑒, it is considered that the e� ective torque can be obtained by subtracting the pumping 
losses 𝑇𝑝𝑢𝑚𝑝 and friction losses 𝑇𝑓𝑟𝑖𝑐 from the indicated torque 𝑇𝑖, as described by equation 
(1). 

𝑇𝑒 = 𝑇𝑖 − 𝑇𝑝𝑢𝑚𝑝 − 𝑇𝑓𝑟𝑖𝑐.                 (1)
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� e estimation of the indicated torque depends on several factors, such as the engine 
speed, intake manifold pressure, air-fuel ratio, admitted fuel � ow and ignition timing. In 
equation (2), the e� ects of the air-fuel ratio, ignition timing and load are separated into three 
factors, respectively 𝑒𝜆, 𝑒𝜉 and 𝑒𝛼 (Guzzella & Onder, 2010). � ese factors relate the indi-
cated torque 𝑇𝑖 to the torque 𝑇𝑓 that would be produced if the thermal e�  ciency of the engine 
were unity. � e optimum indicated e�  ciency is achieved with the optimal ignition timing 
and air-fuel ratio values. Under these conditions, the indicated e�  ciency is represented by the 
factor 𝑒𝛼 itself.  

𝑇𝑖 = 𝑒𝛼. 𝑒𝜆. 𝑒𝜉. 𝑇𝑓                 (2)

� e relationship between the indicated torque and the ignition timing is parabolic 
(Moskwa, 1988). When the ignition angle 𝜉 is set to the maximum brake torque (MBT) angle 
𝜉0, it is considered that there are no losses in e�  ciency due to the timing of ignition. � e 
maximum brake torque angle is the angular position of the spark discharge that provides the 
highest indicated e�  ciency. � e opening of the parabola is directly related to the coe�  cient
𝑘𝜉, as shown in equation (3). � e factor that accounts for the e�  ciency losses due to the air-
fuel ratio values can be approximated by equation (4) (Eriksson & Nielsen, 2014). � e factor
𝑒𝛼 is mapped based on the engine speed and intake pressure. 

𝑒𝜉 = 1 − 𝑘𝜉. (𝜉 − 𝜉0)2   (3)
𝜆 𝑓𝑜𝑟 𝑟𝑖𝑐ℎ 𝑚𝑖𝑥𝑡𝑢𝑟𝑒𝑠    (4)
𝑒𝜆 = { 1 𝑓𝑜𝑟 𝑝𝑜𝑜𝑟 𝑚𝑖𝑥𝑡𝑢𝑟𝑒𝑠

A multivariable neural network controller is employed to control the useful energy gene-
ration of the engine through the following actuators: throttle valve, fuel injector and ignition 
coil. � e neural network is trained using data obtained in the laboratory. During training, 
values such as throttle opening, ignition angle, injection timing, oil temperature, engine speed, 
intake pressure, air-fuel ratio and e� ective torque are provided to design a neural network 
controller that provides appropriate values for throttle opening, ignition angle and injection 
timing for a desired e� ective torque. Current and delayed values of intake pressure and air-fuel 
ratio signals are used, aiming to enhance the predictive capability of the neural network. � ere 
is a set of phenomena that occur, such that changes in air intake or fuel injection gradually 
impact on the air-fuel ratio. 

� e neural network controller operates in parallel with a gain-schedule routine, which 
adjusts the controller’s gain increment by attenuating it when the error magnitude between 
the reference and e� ective torque is small. � e developed controller is validated in a simu-
lation with the modeled engine, as shown in Figure 1. � e virtual engine is connected to a 
gain-scheduling routine, a neural network control system and a safety interface. � e safety 
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interface ensures that the control signals received by the actuators do not have values that 
could compromise the drivability and safety of the engine. 

For applicability in automotive so� ware, all systems must exert low processing demand 
in order to enable their real-time implementation. In this way, systems can be programmed in 
a hardware-in-the-loop environment or in the electronic control unit due to their capability to 
operate in real-time (Schäu� ele & Zurawka, 2016). 

Figure 1
Simpli� ed diagram of the control system with the engine model

3. EXPERIMENTAL SETUP 

In order to acquire experimental data for the purpose of engine modeling, a laboratory envi-
ronment equipped with a bench dynamometer and an external cooling system, as depicted in 
Figure 2, was employed. � e engine under study was the EA-111 VHT 1.6 l, which possesses 
several features, including indirect port injection, fuel compatibility with both gasoline and 
ethanol, absence of gas recirculation, spark ignition, eight valves, naturally aspirated con� gu-
ration and a compression ratio of 12.1.  
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Figure 2
EA-111 VHT 1.6 l engine coupled to the dynamometer

4. RESULTS AND DISCUSSION  

Initially, data acquisition is performed to determine multiple engine parameters. Gas pumping 
losses correspond to the reduction in torque resulting from the energy expended in transfe-
rring gas from a low-pressure location (intake manifold) to a high-pressure location (exhaust 
manifold). � ese losses can be quanti� ed and computed based on the engine speed and intake 
pressure. By calculating the pumping loss at various operating points, the map illustrated in 
Figure 3 is generated. For speci� c insights into this calculation methodology, refer to Guzzella 
and Onder (2010). 

Figure 3 
Pumping torque map
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� ere are various methods to estimate torque losses due to friction. In this research, an active 
bench dynamometer capable of rotating the engine while it is o�  was used. � e force necessary to 
rotate the engine can be regarded as the force required to overcome friction. Consequently, the 
torque measured by the active dynamometer in this scenario, known as motored torque, provides 
an approximation of the friction values 𝑇𝑓𝑟𝑖𝑐. Motored torque values were obtained at di� erent 
oil temperatures and engine speeds, as shown in Figure 4. 

In order to construct the torque estimator, the optimal ignition angle and the optimal 
indicated e�  ciency were identi� ed for various operating conditions. Figure 5 presents the 
results of the identi� cation of the optimal ignition angle 𝜉0, while Figure 6 displays the results 
of the optimal indicated e�  ciency 𝑒𝛼. 

Figure 4
Motored torque map

Figure 5
MBT angle map
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� e comprehensive system diagram is depicted in Figure 7. � e engine model encompasses 
various subsystems including the air intake system, the air-fuel mixture formation system 
and the energy generation system. To maintain drivability and driver safety, a safety module 
is incorporated to restrict control signals from assuming values that may compromise these 
aspects. � e neural network control module comprises a two-layer neural network architec-
ture as illustrated in Figure 8. Additionally, the gain-scheduling module generates signals to 
increment the control signals. However, this increment is attenuated for low absolute error 
values, considering the error as the discrepancy between the torque reference and the actual 
torque. 

Figure 6
Indicated e�  ciency for optimal conditions
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Figure 7
Simulink diagram of the control system with the engine model and the safety routine 

Figure 8
Two-layer  neural network control
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To validate the control design, simulations were conducted across a range of engine 
speeds. � e simulation results for the engine operating at 2 000 RPM are presented in Figure 
9, while Figure 10 showcases the outcomes for the engine at 3 000 RPM. Figure 11, addi-
tionally, displays the results obtained for the engine running at 4 000 RPM. In these � gures, 
a comparison is made between the reference signal and the corresponding torque signal. To 
evaluate the control performance in both steady-state and transient regimes, step changes are 
applied to the reference signal. 

Figure 9a 
Torque reference (red signal) contrasting with torque signal (blue signal) in the simulink 
environment for 2000 RPM with negative step in the reference

Figure 9b
Torque reference (red signal) contrasting with torque signal (blue signal) in the simulink 
environment for 2000 RPM with positive step in the reference
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Figure 10a
Torque reference (red signal) contrasting with torque signal (blue signal) in the simulink 
environment for 3000 RPM with positive step in the reference

Figure 10b
Torque reference (red signal) contrasting with torque signal (blue signal) in the simulink 
environment for 3000 RPM with negative step in the reference
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Figure 11a

Torque reference (red signal) contrasting with torque signal (blue signal) in the simulink environ-
ment for 4000 RPM with positive step in the reference 

Figure 11b
Torque reference (red signal) contrasting with torque signal (blue signal) in the simulink 
environment for 4000 RPM with negative step in the reference 

For a clearer understanding of the signal behavior in the transient regime, highlights of 
the simulation with the engine at 3 000 RPM are illustrated in Figure 12. � e controller exhi-
bited low values for both the rise and fall times in the transient regime and the mean absolute 
error in the steady-state regime across all engine speeds. For all engine speeds, the average abso-
lute error values were less than 1 Newton meter, and the average rise and fall time values were 
less than 2 seconds. � ese results indicate that the developed controller demonstrates proper 
reference tracking, implying good drivability and safety for the driver. In order to assess the 
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control e� ort, the control signals are depicted in Figure 13. � e examination reveals that the 
control signal values are appropriate for each actuator, as they are within the range of execu-
table values.

A comprehensive system simulation, encompassing a timeframe of 10  000 seconds, 
completed its execution within a mere 70 seconds on a standard computing device. � is signi-
� cant result validates the system’s viability for diverse automotive so� ware applications, as it 
demonstrates real-time responsiveness, meeting the stringent requirements of such domains. 

Figure 12a
Transient regime details in the application of a positive step in torque reference with the engine at 
3000 RPM

Figure 12b
Transient regime details in the application of a negative step in torque reference with the engine 
at 3000 RPM
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Figure 13a
Ignition angle control signal, in degrees before top dead center (° BTDC), for the engine
at 3000 RPM

Figure 13b
Injection timing control signal, in milliseconds, for the engine at 3000 RPM 

Figure 13c
� rottle opening setpoint control signal, in opening percentage, for the engine at 3000 RPM
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5. CONCLUSIONS

� is article presented the application of a two-layer neural network for controlling energy 
generation in an internal combustion engine. � e identi� cation of the neural network para-
meters was performed using laboratory data obtained with a bench dynamometer, establishing 
a relationship between the main variables responsible for energy generation. Additionally, a 
gain-scheduling routine was implemented to adjust the controller gain, attenuating the control 
action increment for low error values. 

To ensure the safety and proper response of the vehicle to driver commands, a safety 
routine was developed to prevent the control action from reaching undesired values. � e 
experimental results obtained with the developed controller demonstrated a low value of 
mean absolute error in steady-state regime and a reduced average value of rise and fall time 
in transient regime. � ese results con� rm the drivability and satisfactory performance of the 
engine, reinforcing the e� ectiveness of using neural networks in controlling energy generation 
in internal combustion engines. 

� e developed project has proven to be suitable for application in automotive so� ware, 
primarily due to its real-time responsiveness. A comprehensive system simulation spanning a 
duration of 10 000 seconds can be executed within 70 seconds on a conventional computing 
device, thereby showcasing e�  ciency and agility in computational performance. Furthermore, 
it is possible to convert the project into .c or .a2l � les, enabling its integration with widely used 
solutions in the automotive industry, such as hardware-in-the-loop and electronic control unit. 
� ese specialized solutions possess signi� cantly faster data processing capabilities compared to 
regular computers, further enhancing the advantages of the system proposed in this article for 
automotive so� ware applications. 

As a suggestion for future work, the presented control project can be implemented in a 
hardware-in-the-loop environment and in the engine with a bench dynamometer to perform 
the necessary calibration of the adjustable gain routine parameters. Once the calibration to be 
used is obtained, the entire hybrid control structure, which consists of the collaborative work 
of an adjustable gain routine with a neural network, can be converted into a single neural 
network. Similarly, this neural network can be programmed into the engine control unit 
(ECU) for validation in test rooms. 
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