
276

INNOVANDO LA EDUCACIÓN EN TECNOLOGÍA. Actas del II Congreso Internacional de Ingeniería de Sistemas

Integrating and Accessing University Information APIs
Using Natural Language Processing Tools

Shantanu Hadap / Shubha Shubha

Attending or working at a university requires students and faculty to manage a large amou-
nt of information to be successful. Both school administration and academic challenges have
requirements to be met. One solution to this problem is to provide a virtual assistant which
gives the required information to students and faculty. In this work, a virtual assistant that
can completely understand conversational English and provide any needed information has
been created. Talking to a virtual assistant to get the information is more convenient than the
conventional way of doing it. Getting information from the virtual assistant does not require
typing or browsing or any type of human interventions, which makes it more time-efficient
and accessible. This solution has been tried in a private environment with a small scope at the
University of St. Thomas and the results have been encouraging. Sixty percent (60%) of the
users believe the assistant is very useful and the remainder finds it moderately useful.

Integración y acceso a API de información universitaria
utilizando herramientas de procesamiento de lenguaje natural

Asistir o trabajar en una universidad requiere que los estudiantes y la facultad administren una
gran cantidad de información para tener éxito. Tanto la administración escolar como los desa-
fíos académicos tienen requisitos que cumplir. Una solución a este problema es proporcionar
un asistente virtual para estudiantes y profesores que brinde la información requerida. En este
trabajo se crea un asistente virtual que puede comprender completamente el inglés conversa-
cional y proporcionar la información necesaria. Hablar con un asistente virtual para obtener la
información es más conveniente que la forma convencional de hacerlo. Obtener información
del asistente virtual no requiere tipear o navegar ni ningún tipo de intervención humana, lo
que lo hace más eficiente y accesible. Esta solución se ha probado en un entorno privado con un
pequeño alcance en la Universidad de St. Thomas y los resultados han sido alentadores. El 60 %
de los usuarios cree que el asistente es muy útil y el resto lo encuentra moderadamente útil.

277

Pósteres

Shantanu Hadap, Shubha Shubha
hada6576@stthomas.edu, shub6690@stthomas.edu

University of St.Thomas

()

Abstract
Attending or working at a university requires students and faculty to manage a large amount of information to be successful. Both school administration and
academic challenges have requirements to be met. One solution to this problem is to provide a virtual assistant which gives the required information to
students and faculty. In this work, a virtual assistant that can completely understand conversational English and provide any needed information has been
created. In this work, a virtual assistant is created that can completely understand conversational English and provide any needed information. Talking to a
virtual assistant to get the information is more convenient than the conventional way of doing it. Getting information from the virtual assistant does not require
typing or browsing or any type of human interventions which makes it more time-efficient and accessible. The implication of this work is that students, faculty
and staff will have access to a virtual assistant to help out and thus minimize the stress of a school year. This solution has been tried in a private environment
with a small scope at the University of St. Thomas and the results have been encouraging. Sixty percent (60%) of the users believe the assistant is very useful
and the remainder finds it moderately useful.

Introduction
Is it possible to have a virtual assistant to students
and faculty that will completely understand
conversational English and can provide the
relevant answer or information? ‘Canvas Panda’ is
one such assistant which is developed specifically
for the University of St. Thomas. This app runs on
smart assistants like Google Assistant or on web
and mobile chat-bot applications like Facebook
messenger and Skype. The user needs to specify
"Talk to Canvas Panda" for the Google Assistant
to take them to the app. This assistant app then
gets the input questions from the users. These
questions are mapped with the related intent
defined in the Google Dialogflow. The intents can
be with parameters or without parameters. The
intents are mapped to the related methods in the
cloud functions and these methods make the
REST API calls to different university APIs like
library, student/faculty directory, computer labs,
etc. It can also access secured API services such
as Canvas APIs [1] and student account APIs. The
received information is cleaned and passed back
to the assistant. The assistant provides the
required information in English sentences as
output.

Materials and methods
Day to day university queries need a time-efficient solution with minimum user interactions and easy
accessibility. To develop this solution, an NLP tool called Google Dialogflow [2] is used. An agent/app
with an invocation name ‘Canvas Panda’ has been created in Google Dialogflow actions [3]. This app
maps user conversational queries to specific intent using training phrases. Common queries based on
university environment have been listed and intents have been created for each of these queries. Inside
intents, training phrases have been defined. The training phrases are the different possible ways in which
a query can be asked by the user. Dialogflow ML can map the query to intent even if it is not structured
properly or is grammatically incorrect. Dialogflow also keeps on training and improving this mapping.
The training phrases can also contain parameters/slots. The intents are linked to the Google Cloud
functions [4] which contain methods for each intent. The cloud function is written using Node.js [3] and
has been deployed on the Google Cloud platform. The cloud function calls university specific open APIs
such as library service API, directory service API, etc. Integrating the third-party API can be achieved by
implementing authentication methods like OAuth. The result obtained by API is cleaned and sent back to
Google Assistant which reads or displays the response to the end user.

Figure 1. Architecture design of Canvas Panda. The APIs integrated are shown in green and the
possible integrations are shown in yellow.

Results
The preliminary version of this app has been tested in a private environment and a survey has been done
with a small group of five people. The survey result shows that 60\% of the users believe the assistant is
very useful/accessible and the remainder finds it moderately useful/accessible. All the users find the app
to be time-efficient. Users were asked to vote for their preferred choice of device for this application. The
response was distributed as follows: 29% voted for smart-speaker, 29% for mobile, 18% for smartwatch,
12% for website and 12% for web messenger.

Figure 2. Survey results, text output using Google Assistant on mobile phone.

Conclusion
Our main aim was to develop a time-efficient and
easily accessible solution for day-to-day
university queries of students and faculties. The
project was initiated with a narrow scope and
limited API integrations. The response of the
people participating in the survey reflects that the
draft version of the app build using Google
Dialogflow satisfied our focused aspects of
efficiency and accessibility.
The scope of this project could be further
increased by including more actions/queries such
as student account details, library systems,
campus news and announcements, lab/study room
bookings and availability, etc. Integration of
different third-party university applications like
Canvas, Outlook, etc. could be a future addition
to this application.

References
[1] Instructure Inc. Canvas lms – rest api and extensions documentation.

[2] Google Inc. Build an agent from scratch using best practices.

[3] Google Inc. Build fulfillment with the Actions on Google Node.js client library.

[4] Google Inc. Google Cloud Functions documentation.

Acknowledgements
We would like to thank Michael Dorin and Abe

Kazemzadeh for their guidance; and Brett Coup,

Eric Tornoe and Benjamin Durrant for providing

technical resources required for the project.

