
272

INNOVANDO LA EDUCACIÓN EN TECNOLOGÍA. Actas del II Congreso Internacional de Ingeniería de Sistemas

Open-Source Software & Personal Medical Devices:
Interpreting Risk Through an Evaluation

of Software Testing

Michael Dorin / Heather Mortensen / Sergio Montenegro

The availability of powerful low-cost hardware and advanced software tools has made open-
source medical devices possible. Deciding to use an open-source medical device may require
acceptance of some risk. Fully comprehending the risk level is essential since failure of the
software or the medical device is dangerous. As many medical applications contain complica-
ted codes, an excellent method for understanding software readiness is to evaluate how much
testing has been completed on the software. As a case study, this project evaluates the level of
testing performed on software components of the Loop Artificial Pancreas system.

Classic methods for evaluating complicated source codes are used to demonstrate how much
testing is needed in a project. Our analysis shows that the Loop Artificial Pancreas system
(master branch) has been thoroughly tested with most of the faults likely discovered. By using
classic software engineering metrics and techniques, it is possible to gauge how completely an
open-source medical product has been tested and make an educated decision about the risk
associated with using it.

Software de código abierto y dispositivos médicos personales: interpretación
del riesgo a través de una evolución de las pruebas de software

La disponibilidad de hardware de bajo costo y herramientas de software avanzadas ha hecho
posible los dispositivos médicos de código abierto. La decisión de utilizar un dispositivo
médico de código abierto puede requerir la aceptación de algún riesgo. Comprender comple-
tamente el nivel de riesgo es esencial ya que la falla del software o del dispositivo médico es
peligrosa. Como muchas aplicaciones médicas contienen códigos complicados, un método
excelente para comprender la preparación del software es evaluar la cantidad de pruebas que se
han completado en el software. Como estudio de caso, este proyecto evalúa el nivel de pruebas
realizadas en componentes de software del páncreas artificial de bucle.

Los métodos clásicos para evaluar el código fuente complicado se utilizan para demostrar cuán-
tas pruebas se necesitan en un proyecto. Nuestro análisis muestra que el sistema de páncreas
artificial de bucle (rama maestra) se ha probado exhaustivamente con la mayoría de las fallas
probablemente descubiertas. Mediante el uso de técnicas y métricas de ingeniería de software
clásico, es posible medir cuán completamente se ha probado un producto médico de código
abierto y tomar una decisión informada sobre el riesgo asociado con su uso.

273

Pósteres

IMPORTANT ONGOING WORK

Loop is a mature project, so it was possible to
evaluate it at a very tested state. However,
new open-source medical and aerospace
projects are released on a regular basis.
More work is required to design a practical
procedure using commonly available and
affordable tools and techniques for
evaluating risk on mission critical projects. The
following aspects are being explored for the
future procedure.

McCabe's cyclomatic complexity gives an
indication of how many independent paths
exist in a module by showing how many unit
tests are required. Unit tests should be
reviewed and execution reports analyzed [3].

Static analysis is a procedure for finding
program faults using tools which examine the
code without executing it.

Human Complexity Analysis measures the
difficulties a person may encounter when
reviewing the source code. The coding style is
an important part of this.

Weibull Analysis will make a prediction
based on bug discovery rates when about
2/3 of bugs are found. Weibull will be
especially useful on new projects. [7]

METHODOLOGY

1. Estimate potential bugs using Halstead method 1

Bugs = (Halstead effort2/3)/3000. [2]

2. Estimate potential bugs using Halstead method 2

Bugs = Halstead volume/3000 [2]

3. Estimate potential bugs using McConnell's method

A delivered bug every 15 to 50 lines of code. [4]

4. Akiyama’s method

Bugs = 4.86+0.018 X (lines of code) [1]

5. Estimate reported bugs reviewing online reporting.

6. Estimate reported bug count by scanning git log.

7. Compare estimated bugs to reported bugs.

Michael Dorin, Heather Mortensen, Sergio Montenegro

mike.dorin@stthomas.edu, mort0048@stthomas.edu, sergio.montenegro@uni-wuerzburg.de

REFERENCES
1. Akiyama, F. , An example of

software debugging. IFIP
Congress. (1971)

2. Halstead. Elements of
software science. Vol. 7.
New York: Elsevier, 1977.

3. McCabe, "A complexity
measure." IEEE Transactions
on software Engineering 4
(1976)

4. McConnel, “Code Complete”
Pearson Education (2004).

5. DiSimone, K, “My Artificial
Pancreas”,
https://myartificialpancrea
s.net/, 2017

6. LoopDocs,
https://loopkit.github.io/lo
opdocs/#welcome-to-loop,
Retrieved July 2019.

7. Simmons, Erik. "Software
Defect Arrival Modeling
Using the Weibull
Distribution." Pacific
Northwest Software
Quality Conference.

8. Pixabay, pixabay.com.
Pictures retrieved July
2019

9. MT pump frequency:
https://loopkit.github.io/lo
opdocs/faqs/rileylink-
faqs/

ABSTRACT

The availability of powerful low-cost hardware and advanced software tools has made open-source medical devices possible. Deciding to use an open-source
medical device may require acceptance of some risk. Fully comprehending the risk level is essential since failure of the software or the medical device is
dangerous. As many medical applications contain complicated codes, an excellent method for understanding software readiness is to evaluate how much testing
has been completed on the software. As a case study, this project evaluates the level of testing performed on software components of the Loop Artificial Pancreas
system. Classic methods for evaluating complicated source codes are used to demonstrate how much testing is needed in a project. Our analysis shows that the
Loop Artificial Pancreas system (master branch) has been thoroughly tested with most of the faults likely discovered. By using classic software engineering metrics
and techniques, it is possible to gauge how completely an open-source medical product has been tested and make an educated decision about the risk associated
with using it.

DISCUSSION AND CONCLUSION
The number of bugs found in a project is a good representation of how much
progress has been made in the test workflow. With open-source projects, we
found that not all bugs are reported to the official bug tracking software.
Often developers make a fix and check it in without officially logging the bug.
Also many times users of a particular project report bugs that do not inspire a
fix from the developers. In this research, a scan of the git log as well as a
review of on-line reported bugs were used to estimate bug fixes.

The particular tools and metrics used in this project were selected and
evaluated because of their availability and ease of understanding for those
with only a basic background in software development. It is imperative that a
person considering the use of one of these devices has a practical means of
evaluating their risk, without the requirement of complicated or expensive tools.
All of the tools used in this project are open source.

This project and case study evaluated the state of software testing for a
particular project. Software testing alone is essential, but it does not address all
the areas of concern. Further research is necessary to build a complete set of
practical tools and procedures. This project and case study have shown one
important and practical method for evaluating open-source mission-critical
systems.

Project Online Reported Bugs Bugs Keyword in Log
Amplitude-iOS 70 176

CGMBLEKit 28 52
G4ShareSpy 0 4

LoopKit 35 188
SwiftCharts 311 169

dexcom-share-client-swift 3 5
Rileylink iOs 67 347

Loop 458 415
Total 972 1356

Estimated Bugs Technique Online Reported
Keywords
Reported

1284.156 Akiyama's Method 75.6 % 100 %+

1066.08 McConnell’s Method 91.1 % 100 %+

936.16 Halstead 1 96.3 % 100 %+

1388.04 Halstead 2 70 % 97.6 %

CASE STUDY

LOOP ARTIFICIAL PANCREAS

Loop was funded and built primarily
by diabetic patients and caregivers. It
was the first closed-loop system
available in the US and preceded the
release of a commercial system. Legal
liability was limited by the fact that
individual patients built the system
themselves atop existing commercial
medical devices.

Loop replaces an insulin pump
controller and a continuous glucose
monitor (CGM) receiver with an
iPhone. A CGM sensor transmits blood
glucose measurements via Bluetooth
low energy (BLE) to the iPhone. The
iPhone performs analytics and
predictive statistics. Data is output to
the user, alongside alerts for
impending low blood sugar levels.
Loop can utilize one of four different
insulin models to perform the analysis.
Loop incorporates data manually
collected by the user inside Apple’s
Health app. In the event of Loop
failure, insulin delivery reverts to
default delivery rates in the pump.
The iPhone sends BLE to the RileyLink,
a custom-built piece of hardware that
bridges communications between
devices that use BLE (iPhone) and
devices that use radio frequency (RF)
(insulin pumps). RileyLink sends an RF
command (916 MHz) to an insulin
pump, where physical delivery of the
medication to the user takes place
through a catheter. [5] [6] [9]

Table 1

Table 2

ACKNOWLEDGEMENTS
We wish to especially thank Kathryn DiSimone and Nate Racklyeft for their
assistance with information and images, as well as necessary permissions.

