
45

Building Blocks for Powerful Ideas: 
Designing a Programming Language to Teach 

the Beauty and Joy of Computing

Jens Mönig 
jens.moenig@sap.com/ Research Expert SAP, Germany

Recepción: 9-8-2019 / Aceptación: 21-8-2019

Abstract. Snap! is a cloud-native graphical programming environment and an online 
community. It is the programming language made for UC Berkeley’s popular introductory 
CS course named “The Beauty and Joy of Computing”. Snap! is taught in colleges and high 
schools across the U.S. from Palo Alto to Philadelphia. It has been translated to more than 
40 languages and is used around the world—from Göttingen to Beijing—for teaching and 
research. Snap! has been designed for inclusion. Its low floor welcomes beginners and its 
multi-media capabilities invite creative thinkers of all ages. At the same time, Snap! offers 
sophisticated abstractions that make it suitable for an intellectually rigorous introduction to 
computer science. 

Keywords: Snap!, BJC, AP CSP, CS0.

Construyendo bases sólidas para ideas poderosas: diseñando un lenguaje  
de programación para enseñar la belleza y alegría de la informática

Resumen. Snap! es un entorno de programación gráfica nativo de la nube y una comunidad 
en línea. Es el lenguaje de programación creado para el popular curso introductorio de CS de 
UC Berkeley llamado “La belleza y la alegría de la informática”. Snap! se imparte en colegios 
y escuelas secundarias de los EE. UU., desde Palo Alto hasta Filadelfia. Se ha traducido a más 
de 40 idiomas y se utiliza en todo el mundo, desde Gotinga hasta Beijing, para la enseñanza 
y la investigación. Snap! ha sido diseñado para su inclusión. El nivel bajo le da la bienvenida 
a principiantes y sus capacidades multimedia que invitan a pensadores creativos de todas las 
edades. Al mismo tiempo Snap! ofrece abstracciones sofisticadas que lo hacen adecuado para 
una introducción intelectualmente rigurosa a la informática.

Palabras clave: Snap!, BJC, AP CSP, CS0.



46

INNOVANDO LA EDUCACIÓN EN TECNOLOGÍA. Actas del II Congreso Internacional de Ingeniería de Sistemas

1. INTRODUCTION

Recent years have seen a thunderous revival of programming education, sparked by a growing 
demand for computationally skilled workforce and spearheaded by MIT’s visual Scratch 
language. In Scratch’s wake, a new class of so-called “blocks-based” programming editors has 
appeared, and visual coding has since evolved into the de-facto standard for introductory 
CS activities. Along with Scratch’s metaphor of stacking bricks, representing chunks of code 
into program-“towers” that are executed from top to bottom, a very traditional imperative 
style of programming has been established as quasi-best practice for introducing children 
and novices to CS. 

At the same time, driven by the asynchronous nature of web programming and massive 
parallelization on the backend side to cope with “big data”, many professional text-based 
programming languages have been revamped to support functional programming techniques 
such as proper tail-calls and even lambda, which before were considered too exotic to become 
mainstream. The gap between what beginners are exposed to in visual blocks-based languages 
and what is required to express themselves in a professional modern programming language 
today is more than just syntax. The gap is also conceptual and calls for proficiency in paradigms.

2.  A CHALLENGE

Frequently discussed among educators is how to foster the transition from visual to textual 
programming. Sometimes the proposed solutions suggest bi-modal code editing, being able 
to switch back and forth between blocks and text. While this might address the lesser issue of 
coping with textual syntax, it does not help with introducing concepts and paradigms unsup-
ported by any one side, and in the worst case even impoverishes the beginner’s programming 
experience to the least common denominator of two programming languages.

On the other side of the spectrum, efforts are under way to broaden the scope and raise 
the ceiling of blocks-based programming. I will present one such project: Snap! Build Your 
Own Blocks. Snap! is a Scratch-like programming language that treats code blocks as first-class 
citizens instead of confining them to an editing modality. Embracing nested data structures 
and higher order functions, Snap! lets learners create arbitrary control structures and even 
custom programming languages with just blocks. Snap! has been developed for UC Berkeley’s 
introductory computer science course named “The Beauty and Joy of Computing”. 

3. IN THIS TALK

I will share thoughts on the design of Snap! in a live-programmed excursion touching on a 
selection of powerful ideas from algorithms to artificial intelligence.


