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Abstract. The construction of gene interaction models must be a fully collaborative and 
intentional effort. All aspects of the research, such as growing the plants, extracting the mea-
surements, refining the measured data, developing the statistical framework, and forming and 
applying the algorithmic techniques, must lend themselves to repeatable and sound practices. 
This paper holistically focuses on the process of producing gene interaction models based on 
transcript abundance data from Arabidopsis thaliana after stimulation by a plant hormone.
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Modelo generado computacionalmente de interacción genética  
del próximo estado basado en Arabidopsis thaliana 

Resumen. La elaboración de modelos de interacción genética debe ser un esfuerzo totalmente 
intencional y colaborativo. Todos los aspectos de la investigación, tales como el cultivo de las 
plantas, la obtención de las mediciones, el refinamiento de los datos recopilados, el desarrollo 
del marco estadístico, y la formulación y aplicación de técnicas algorítmicas, deben colaborar 
entre sí para establecer prácticas reproducibles y eficaces. Este artículo se centra, de manera 
holística, en el proceso de creación de modelos de interacción genética basados en los datos 
de la abundancia de transcritos obtenidos de la estimulación de la planta Arabidopsis thaliana 
mediante hormonas vegetales.

Palabras clave: OpenFlow, Flow, centro de procesamiento de datos,  
red neuronal artificial, Defined Networking
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1.	 Introduction

Our process of creating gene interaction models from Arabidopsis thaliana gene transcript 
abundance data involves multiple specialized steps supervised by biologists, biochemists, 
computer scientists, mathematicians, and statisticians. This has been a long-term interdiscipli-
nary collaborative commitment, which ultimately has yielded and continues to yield models 
that provide testable hypotheses of gene pathways. The research into the construction of gene 
interaction models is an active area. Various groups of researchers have taken a number of 
different modeling approaches for time-course measurements. The modeling approach and 
setting presented herein is based on the stimulation of Arabidopsis thaliana with either the 
plant hormone auxin or ethylene at time 0, the collection of three replicates of gene transcript 
abundance measurements taken at 8 time points, and the creation of interaction models by 
rigorously-developed computational techniques guided by relative posterior probabilities of 
directed acyclic graphs.

The creation of gene interaction models is an active area of research. Algebraic techniques 
(Allen, Fetrow, Daniel, Thomas, & John, 2006; Laubenbacher & Stigler, 2004; Liang & Han, 
2012; Stigler, 2007), differential equations (Cao, Qi, & Zhao, 2012), and partial correlations 
(de la Fuente, Bing, Hoeschele, & Mendes, 2004; Krämer, Schäfer, & Boulesteix, 2009; Li & 
Gai, 2008; Wille et al., 2004) are some of the approaches applied to this important problem. 
The techniques discussed herein are all based on our mathematically rigorous Bayesian proba-
bilistic techniques (Patton, John, & Norris, 2012; Patton, John, Norris, Lewis, & Muday, 
2013, 2014; Norris, Patton, Huang, John, & Muday, 2015; John, Fetrow, & Norris, 2011).

The biological thrust of this research is to understand lateral root development. 
Arabidopsis thaliana, the lab rat for plants, is specifically studied in this research. Among the 
reasons for using this plant are the ease in which it can be grown and propagated for similarity, 
as well as the extensive literature and databases on the plant, its genes and proteins.

The one of this research is to create hierarchical gene interaction models. Essentially, this 
means that there is an overall truth about the interaction of the genes, and any model should 
capture some elements of that truth. Also, various time paradigms can be applied to time-
course data. The next-state paradigm is used exclusively in this paper. It proposes that, if there 
is a directed edge from gene A to gene B in the true biochemical network, the measurement of 
A’s expression at time t has an influence on B’s value at time t +1.

2.	 From plant to refined data

The first stage for producing a gene interaction model involves growing the Arabidopsis 
thaliana plants in a controlled environment. The experiments that generate the gene transcript 
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abundance data require thousands of plants. These plants should be as genetically similar as 
possible. To accomplish this, an initial stand of plants is grown in the laboratory. After the 
plants mature, all visually dissimilar plants are removed from the population. Then, the plants 
cross pollinates to create the next generation. This process is repeated until obtaining the third 
plant generation.

Using this third generation of plants, the Arabidopsis thaliana is stimulated by a plant 
hormone at time 0, and then gene transcript abundance measurements are collected at times 
0, 0.5, 1, 2, 4, 8, 12 and 24 hours. At each of the 8 time points, some of the plants are harvested 
and analyzed. The Affymetrix technology is used to assess the gene transcript abundance 
measurements for the studied genes.

Each experiment is repeated three times, leading to three sets of data for each experiment. 
The three replicates should be similar, but certainly not identical.

The transcript abundance data consists of either 1, 246 or 449 transcripts depending on 
the specific experiment. The first step in data refinement will remove genes that have incom-
plete Affymetrix measurements. Next, data with too large p-value measurements is removed: 
these correspond to measurements that the Affymetrix technology reports as unreliable.

From the remaining genes, the biologists and biochemists select subsets of genes, many of 
which have the same functional relationship. For the present paper, this ultimately results in 
three sets of gene transcript abundance data known as the IAA12, ACC26 and IAA37 data sets.

Next, these transcript abundance data sets are further culled based on their numerical 
properties (Lewis et al., 2013). Then, these reduced genes are clustered into classes that reflect 
classes of similar gene stimulation or repression across the 8 time points. Finally, representa-
tives of the equivalence classes are chosen for the final data sets IAA12, ACC26 and IAA37. 
There are twelve (12) and thirty seven (37) genes represented in the IAA12 and IAA37 sets, 
respectively. All of these genes have been stimulated with the plant hormone auxin (IAA). 
In ACC26, there are twenty six (26) genes, all of which have been stimulated by the plant 
hormone ethylene (ACC) (Harkey et al., 2018). Each of these data sets has three replicates 
that were incorporated in a hierarchical manner as detailed in Patton et al. (2014).

3.	 From data sets to gene interaction models

Each data set consists of three replicates, r1, r2, r3, for n gene’s transcript abundance measure-
ments. The goal is to produce a directed graph, or network, with vertices representing the genes, 
where each edge, gi  gj, is labeled with the probability of a next-state relationship between 
gene gi and gene gj. There are a number of steps required to achieve this goal. A mathematical 
model is needed to represent a set of possible next-state relationships between the n genes. 
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This mathematical model represents one possible set of next-state relationships between pairs 
of genes. Subsequently, a statistical development is required to provide an optimum way to 
compare two of the mathematical models, i.e., which of the two models is more likely given the 
three sets of observations. Lastly, an algorithmic mechanism for searching through the mathe-
matical models is desired: one that is guided by the relative posterior probabilities.

A directed acyclic graph (DAG) provides the structure to model a possible next-state 
relationship between the n genes. Reflexive and circular relations are not supported by DAGs. 
The directed edges of the DAGs are not labeled. The number of DAGs (Moon, 1970) is given 
by
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where n and k are the numbers of vertices and components. Clearly, any search over 
DAGs will require substantial sophistication.

The Norris-Patton likelihood (NPL) of a DAG (Patton, 2012; Norris et al., 2015; Patton 
et al., 2012, 2013, 2014), shown in Equation 1, was specifically developed to compute the 
likelihood that replicates r1, r2, r3 are described by a DAG D, NPL (r1, r2, r3 | D). The DAG 
has j genes with at least one parent, and w genes in the data. ixn is the time-course data for the 
parents of child n from replicate i. n is the concatenated average time-course data over all repli-
cates from each parent of child n. iyn is the time-course data for child n in replicate i.

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁(𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑|𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷) = (2𝜋𝜋𝜋𝜋)−𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 2⁄ 2𝑟𝑟𝑟𝑟(𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟+1)/2𝑔𝑔𝑔𝑔−𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟/22−𝑟𝑟𝑟𝑟∕2Γ(1/2)−𝑟𝑟𝑟𝑟Γ[(𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑 + 1)/2]𝑟𝑟𝑟𝑟  (1)

 

× (2𝜋𝜋𝜋𝜋)−𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑤𝑤𝑤𝑤−𝑗𝑗𝑗𝑗)/2𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒−𝑟𝑟𝑟𝑟(𝑟𝑟𝑟𝑟−1)(𝑤𝑤𝑤𝑤−𝑗𝑗𝑗𝑗)/2 
 

Throughout this paper, we assume uniform priors on the DAGs so that a DAG’s likeli-
hood is its relative posterior probability. Cotemporal and next-state versions of the NPL have 
been developed, in both hierarchical and independent situations. Given two DAGs, D1 and 
D2, the NPL provides the ability to say the degree to which D1 is better than D2. Replicates 
r1, r2 and r3 are hierarchically incorporated to obtain their NPL.
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Two algorithmic DAG search methodologies have been developed to produce the final 
next-state gene interaction models. The first one is based on a Metropolis-Hastings (MH) 
algorithm and the second one is a specialized genetic algorithm (BCHC). For both of these 
approaches, the chosen algorithm samples the DAG space guided by the NPL. The execution 
time complexity of the MH algorithm severely restricts the problem size, whereas the BCHC 
scales work reasonably well with the problem size. For either MH or BCHC, unique DAGs 
are collected across the entire executions of the algorithm. From all these unique DAGs, the 
final next-state gene interaction model is created using the classical Bayesian model averaging 
under equal DAG priors (Hoeting, Madigan, Raftery, & Volinsky, 1999). Specifically, the 
posterior probability of a directed edge e, M(e) in the model is computed.

 

𝑀𝑀𝑀𝑀(𝑒𝑒𝑒𝑒) =
∑𝑑𝑑𝑑𝑑𝑑𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝜒𝜒𝜒𝜒𝑑𝑑𝑑𝑑(𝑒𝑒𝑒𝑒)𝐿𝐿𝐿𝐿(𝑑𝑑𝑑𝑑1,𝑑𝑑𝑑𝑑2,𝑑𝑑𝑑𝑑3|𝑑𝑑𝑑𝑑) 
∑𝑑𝑑𝑑𝑑𝑑𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐿𝐿𝐿𝐿(𝑑𝑑𝑑𝑑1,𝑑𝑑𝑑𝑑2,𝑑𝑑𝑑𝑑3|𝑑𝑑𝑑𝑑)   (2)

where χd (e) = 1 if and only if e is a directed edge in the DAG d; otherwise χd (e) = 0. 
Even though DAGs do not allow cycles, it is certainly possible for cycles, but not loops, to 
appear in the final next-state gene interaction model.

The Metropolis-Hastings (MH) approach is a search governed by the decision process 
shown in Algorithm 1. After a suitable initialization, the MH approach guided the explora-
tion of the DAG space for 500,000,000 steps in each of 10 independent and parallel executions 
( John et al., 2011; Norris et al., 2015). The 200 DAGs with highest likelihood were collected 
across these steps, and a final gene interaction model was produced using Equation 2.

The BCHC modeling algorithm is a specialized genetic algorithm specifically designed 
to handle a population of DAGs (LaPointe, 2017; LaPointe et al., submitted). Each BCHC 
population is a set of DAGs. At the ith step, the BCHC uses the current population of 200 
DAGs to produce the next population of 200 DAGs. It performs this using the specially 
adapted genetical algorithm operators of selection, crossover, mutation, and repair. The selec-
tion operator pairs the 200 DAGs to be parents, the crossover allows dissimilar parents to 
exchange (genetic) information, and the mutation operator is applied to the entire popula-
tion when the population has essentially become stagnant. Unfortunately, the crossover of 
two DAGs and the mutation of a DAG can result in a directed graph containing a cycle. A 
repair operator is required to convert a directed graph containing a cycle into a DAG. Every 
genetic algorithm has many parameters, for example, the population size (200) and the total 
number of generations (250). For all the executions in the BCHC in this paper, the BCHC 
parameters were fixed.
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The MH algorithm was implemented in MATLAB, and the BCHC algorithm in 
Python. For both programs, in order to minimize numerical errors, most computations 
involved the likelihood logarithm. The implementation of both the MH and BCHC algo-
rithms involved distributed computing.

The 12 IAA12 genes were stimulated by auxin (IAA) and were chosen from the 1, 246 
Arabidopsis thaliana genes that respond to IAA treatment (Lewis et al., 2013). For IAA12, 
both MH and BCHC next-state gene interaction models are produced. The BCHC IAA12 
next-state gene interaction model is shown in Figure 1(a). Figure 1(b) shows that the BCHC 
algorithm is very consistent across multiple runs of the IAA12 data. The MH next-state gene 
interaction model is presented in Norris et al. (2015), Table 1, column H1. In this instance, 
there was not much agreement between the MH- and BCHC-based models. However, in 
numerous simulation studies, both the MH and BCHC next-state models do closely agree 
with the respective simulated networks (LaPointe, 2017; Norris et al., 2015).

Note. A next-state gene interaction model and consistency plot across three interaction models for the IAA12 
data set. Only directed edges with posterior probabilities of at least 0.35 are shown. Each directed edge, gi → gj, 
is labeled with the posterior probability of gi influencing gj. The three models in the consistency plot are from 
three executions of the modeling algorithm on the IAA12 data.

Figure 1. A next-state gene interaction model and consistency plot for the IAA12 data set
Elaborated by the authors
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The MH algorithm has not been applied to any data set with more than 12 genes. The 
execution time required for MH to complete is prohibitive for moderately more than 12 genes. 
In fact, this restriction is one of the main motivations for the development of the BCHC 
algorithm.

The ACC26 data set contains information about 26 genes from the 449 that responded 
to treatment with the ethylene precursor ACC. For these 26 genes, specific forbidden gene 
interactions well known from the biological literature were incorporated into the BCHC 
model algorithm (O’Malley et al., 2016). The BCHC gene interaction model is shown in 
Figure 2(a), and the indication of the consistency of similar models is shown in Figure 2(b). 
Comparing Figures 1(b) and 2(b), as the number of genes increased from 12 to 26, the overall 
consistency, though still good, diminished.

 
Figure 2. A next-state gene interaction model and consistency plot for the ACC26 data set
Elaborated by the authors

The 37 genes in the IAA37 data set were identified as IAA-dependent transcriptional 
changes dependent on auxin response factor19, ARF19. The chosen transcripts are in one of 
two functional groups: transcription factors (TF) or cell wall (CW) remodelers. It is known 
that an ARF19 gene can never be a child, a TF gene can only be the child of another TF 
gene, and a CW gene cannot be a parent and can only be a child of a TF gene. These give 
rise to another set of forbidden relationships that have been incorporated into the BCHC 
algorithm. Figure 3 shows both the IAA37 gene interaction model and the consistency infor-
mation across three BCHC executions on the IAA37 data.



24

HACIA LA TRANSFORMACIÓN DIGITAL. Actas del I Congreso Internacional de Ingeniería de Sistemas

 
Figure 3. A next-state gene interaction model and consistency plot for IAA37 data set
Elaborated by the authors 

4.	 Conclusions

The BCHC algorithm, guided by the next-state likelihood, produces consistent gene interac-
tion models. The number of genes increases the execution time of the BCHC algorithm scales 
reasonably, in fact, linearly. Since the rigorous relative posterior probabilities of each visited 
DAG is known, the BCHC algorithm is a specialized genetic algorithm which aggressively 
searches the DAG space for DAGs with high likelihood. The gene interaction model should 
be a reasonably good estimate of the underlying biochemical relationships. Laboratory testing 
of the proposed directed edges suggested by these models is the next important step in this 
interdisciplinary collaborative journey.

Clearly, as the number of genes increases, the BCHC parameters should be adjusted. In 
particular, two parameters that should be adjusted as a function of the number of genes are the 
size of each population and the total number of generations. The increased variance of the consis-
tency plots, as a function of the number of genes, is certainly partially caused by the fixed BCHC 
parameters, so future works should include adapting parameters for different situations.
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